OAK

¥Rivor

National Laboratory

e NIVERSITYof

J[ESA Exploring QR Factorization on GPU for T NNESSE B

Joint Institute for Quantum Monte Carlo Simulation KNOXVILLE

Computational Sciences
Tyler McDaniel (UNC Asheville), Ming Wong (University of South Carolina) Mentors: Ed D'Azevedo, Ying Wai Li, Kwai Wong
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A Given’s Rotation matrix,

QMCPACK is open-source scientific software designed to perform
Quantum Monte Carlo simulations, which are first principles methods

for determining the properties of the electronic structure of atoms, R A s Vet oA where c s cos(B) and s is
molecules, and solids. One major objective is to find the ground state sin(0), rotates the x; and x; of
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Utilizing QR Factorization
» Provides more numerical stability e —
» Less sensitive to ill-conditioned matrices than LU factorization TRSV: e
» Obviates the need to periodically recalculate the inverse of matrix A from
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» The Slater Determinant is a way of expressing the many-particle
wave function for a system of electrons (or other fermions) with
anti-symmetry.

» Eachy, ,.., represents the wave function for a single particle. A=QR, Q= ( a1

» When two particles’ positions are exchanged, two rows are |
switched in the above matrix, which changes the sign of the
determinant and satisfies the anti-symmetric property.
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w = u * transpose(Q) :

32 matrices of size 32 by 32. == W
Relatively large execution gap due to small matrix size.

Evaluate Kernel Result: det(R +w * v') = (y[k] + 1) * det(R)
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Note that Q is orthonormal and R is upper triangular.

QMCPACK Existing Implementation Rank-k Update

» Contiguous accepted change columns can be stored in a sub-matrix,
delaying the need to explicitly update matrix R.
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T m— » The estimated determinant from this continuous sequence of changes can :
[while not all change vectors evaluated] \ be calculated using the matrix determinant lemma. ROT/ROTG (iterative)
matrix A, change vectors U*V'
‘ | Matrix Determinant Lemma Rank-1 Case . :
Factorze— nverse(A), /7T SM. /" Determinant 32 matrices of size 32 by 32.

determinant(A),

A change vector U’ Scaling limited by sequential nature of rotations.

Formula determinant(A+ u*v') Check
>

: _ Find inverse(A + Test:
Find LUs.t. A=LU ) det(A + u™v) /

e > k¢ . ) A det(A)

Suppose A is an invertible square matrix and u, v are column vectors.
det(A L uvT) = (1 2 VTA_lu) det(A) Update Kernel Result: Upper triangular R, A=Q * R preserved
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» Addressing issues in scalability and parallelization
Suppose A is an invertible n-by-n matrix and U, V are n-by-m matrices. » GPU implementation of rank-k algorithm
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