
Workflow and Direct Communication in the Open

Distributive Interoperable Executive Library

Tanner Curren, Nick Moran, and Kwai Wong

August 7, 2015

Contents

1 Background 2

2 Workflow 5
2.1 Goals . 5
2.2 Implementation . 5

3 Direct Communication 10
3.1 Goals . 10
3.2 Implementation . 11
3.3 Jacobi Example . 12

4 Future Plans 15

1

Chapter 1

Background

The open Distributive Interoperable Executive Library, or openDIEL, aims to
allow for the concurrent and sequential operation of many loosely coupled sys-
tems. Loosely coupled systems are systems which operate in serial yet may
require input data from other systems to operate; these loosely coupled sys-
tems, called modules, should depend only on their data input to operate. The
openDIEL is a portable framework intended to facilitate the running of these
systems and the transfer of their data via a library of MPI-based function calls.
For example, the EnergyPlus module calculates the cost of a building’s energy
consumption given a set of parameters. The output of EnergyPlus can then be
used by another module to analyze the energy consumption over different peri-
ods of time. If these two modules are run many times concurrently, the outputs
can all be sent as input to a third module which applies statistical analysis prin-
ciples to the data. These modules together form a loosely coupled simulation
that the openDIEL might be utilized in.

The openDIEL aims to provide a method of running many of these mod-
ules and allowing them to operate in a multi-process environment established
by its framework. The openDIEL initializes any associated modules via a con-
figuration file created by the user using a specific template that identifies key
operation parameters such as the number of processes to be used and what
modules should be run. The framework executes these modules in succes-
sion and in parallel as determined by the user in the configuration file. The
implementation of the workflow for these modules, which involves setting up
the distribution and ordering of the modules, will be described in this re-
port. The library aims to be portable enough to require minimal modifica-
tion of serial code for implementation of communication functionality. The
following diagram details the setup of the various aspects of the openDIEL:

2

The library facilitates data transfer via two major methods: tuple communi-
cation and direct communication. These two methods have both advantages and
disadvantages that make them particularly situational. The tuple space commu-
nication requires an extra process dedicated to maintaining a tuple server, which
stores transferred data prior to acquisition by the intended process as well as
requests for data to be acquired. The tuple space requires minimal maintenance
on the user end, but is not necessarily the most efficient way to transfer large
amounts of data since the data must move from the source process to the tuple
server and then from the tuple server to the target process. For transferring
larger amounts of data, the library provides direct communication, which relies
on a set of shared boundary conditions declared in the configuration file as a
chunk of data that different processes have access to different sections of. One
process can modify data in a shared boundary condition and send this change

3

straight to another process via direct communication, preventing the need to
move the data twice as the tuple space does. This report will also examine
modifications to a previously implemented method of direct communication.

4

Chapter 2

Workflow

2.1 Goals

Before this project, the openDIEL did not have a way to specify how mod-
ules would run in relation to one another. This interaction is the role of the
openDIEL’s workflow engine. This system will be a comprehensive solution to
the to the problem of scheduling modules within the openDIEL, based on both
data dependencies and a user-defined workflow. To this end, the openDIEL
will include new components to the master configuration file to allow the user
to easily specify workflow and data I/O. Before implementation, we will need
to decide on an acceptable model for specifying workflow in the openDIEL’s
configuration file. Then we will need to ensure that this information is readily
available through the openDIEL’s core data structure (IEL exec info t) This will
be implemented through various wrapper functions, extending the configuration
file to enable these new options for workflow. The workflow configuration sec-
tion will be separated from existing configuration options to ensure that existing
processes are easy to convert to the new model of openDIEL simulations.

2.2 Implementation

• Method 1 – IELStartWorkflow()

The first implementation of workflow is a wrapper function (IELStart-
Workflow()) which replaces the current call to IELExecutive() in the driver
of the openDIEL workflow module. This function reads the workflow defi-
nition described in the configuration file and generates a series of workflow
steps to perform. Each workflow step represented one call to IELExecu-
tive(), the workhorse function of the IEL. Since IELExecutive() requires
a configuration file, IELStartWorkflow() generates a temporary configu-
ration file based on the module’s being executed in the current workflow
step and writes it to disk before each IELExective() call. Since IELExecu-
tive() contains collective MPI calls between all openDIEL-enabled ranks,

5

each module in a workflow step has to completed before starting the next
workflow step.

• Method 2 – IELDispatchModule()/Tuple Server Signaling

The next implementation of workflow was restricted wrapper functions.
Instead of wrapping around multiple IELExecutive() calls, this method
wrapped around the actual module’s entry points (the module functions
themselves). To achieve this, the IELDispatchModule() was written. This
function takes two arguments: the executive info struct and a function
pointer. The function pointer is a reference to entry function of the module
to be dispatched. IELDispatchModule will then read three additional
parameters from the configuration file for each module: signal (integer),
wait (integer), and dir (string). The signal/wait system allows users to
describe rudimentary dependency rules. The dispatcher system waits for
the ID specified in the ”wait” parameter before executing a given module.
Additionally, the openDIEL will use the ”dir” parameter to determine
whether a module needs to execute in a separate directory and changes to
that working directory, either accompanied by other processes/modules or
alone. Once the module has finished, a signal is sent to the next module,
allowing it to start.

• Method 3 – Executive Modification

The final implementation of workflow that was decided on is to modify
the source code of the openDIEL directly, and change the way module
running is handled. In this model, the configuration file was expanded to
contain a new section titled ”workflow”. The workflow options allow users
to partition modules into groups of sequentially running modules, which
the openDIEL will then start simultaneously. In this way, processes can
be reused for different modules and the user is presented with an easy to
interpret interface which allows for flexible control over the execution of a
simulation.

Before the workflow engine, all modules executed by the openDIEL were started
at the same time. This flow of execution is as follows:

6

The workflow module added the workflow section to the configuration file.
A full configuration file is shown below. Note the added workflow section.

s h a r e d b c s i z e s = []
t u p l e s p a c e s i z e=0

modules=(
{
f unc t i on=”mod0”
args =(/∗ Optional Arguments Here ∗/)
l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod0 . a”
s p l i t d i r =”module−0”
s i z e =1 // can be anything
po in t s =()
} ,
{
f unc t i on=”mod1”
args =(/∗ Optional Arguments Here ∗/)
l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod1 . a”
s p l i t d i r =”module−1”
s i z e =1 // can be anything
po in t s =()
} ,
{
f unc t i on=”mod2”
args =(/∗ Optional Arguments Here ∗/)
l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod2 . a”
s p l i t d i r =”module−2”
s i z e =1 // can be anything
po in t s =()
} ,
{
f unc t i on=”mod3”
args =(/∗ Optional Arguments Here ∗/)
l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod3 . a”
s p l i t d i r =”module−3”
s i z e =1 // can be anything
po in t s =()
} ,
{
f unc t i on=”mod4”
args =(/∗ Optional Arguments Here ∗/)

7

l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod4 . a”
s p l i t d i r =”module−4”
s i z e =1 // can be anything
po in t s =()
} ,
{
f unc t i on=”mod5”
args =(/∗ Optional Arguments Here ∗/)
l i b t y p e=” s t a t i c ”
l i b r a r y=”libmod5 . a”
s p l i t d i r =”module−5”
s i z e =1 // can be anything
po in t s =()
}

)

workflow :
{

depend :
{
}

groups :
{

group−0:
{

order =(”mod0” , ”mod2” , ”mod3”)
i t e r a t i o n s =1

}
group−1:

order =(”mod1” , ”mod4” , ”mod5”)
i t e r a t i o n s =1

{

}
}

}

With the new workflow options set in the configuration file, the openDIEL’s
flow will be reduced to the following.

8

One advantage is that each group of modules only requires one process,
meaning that this simulation will only require two processes to complete as
compared to the previous requirement of six processes. Additionally, as is ev-
ident in the configuration file example provided above, it is trivial to change
the order of executions in a compiled simulation. Using the ”iterations” pa-
rameter, a user is able to easily change how many times a group of modules
executes. The ”splitdir” option lets users choose the name of a subdirectory
each module will use while execution. The subdirectory name us constructed
to be ¡splitdir name¿-¡module rank¿, unless a modules ”exec mode” parameter
is set to ”parallel”, in which case the subdirectory name for all processes is
¡splitdir name¿-0.

9

Chapter 3

Direct Communication

3.1 Goals

The direct communication portion of the openDIEL is currently intended for
the transfer of large chunks of data. Prior to the implementation of the tuple
communication, the openDIEL relied on direct communication as its primary
format of communication. However, the original implementation of direct com-
munication was poorly optimized for user-end use. This project aims to modify
direct communication in a way that makes it both more efficient and more user-
friendly. The new method of direct communication should be loosely based on
the previously existing method while still making improvements and without
modifying the previous method significantly enough to make code designed for
the previous method no longer functional.

While the tuple communication is still recommended for the openDIEL’s pri-
mary method of communication simply because of the lack of overhead required
in the configuration file and the ease of implementation into user code, the di-
rect communication should also be a viable and readily user-accessible method
of communication. Ideally, the user should be able to choose between the use
of tuple communication, direct communication, or both, and use both methods
as appropriate for the situation. Thus, direct communication aims to provide
an easy-to-use method of transferring data based on a set of shared boundaries
that can be used upon the user’s discretion along with the tuple communication.

Another goal of the new direct communication method is to rely on shared
boundary conditions as parameters for input and output. Tuple communica-
tion, while able to utilize the boundary conditions, relies moreso on transferring
chunks of data and having the user utilize that data at their own discretion.
The new direct communication implementation, however, should handle any
overhead dealing with input and output, assuming all inputs and outputs are
shared boundary conditions, reducing the amount of buffer modifications that
the user has to deal with.

The new direct communication method should be implemented as a set of

10

function calls for the user to implement into code as a method of input/output.
These function calls should allow the user to easily send and receive the bound-
ary conditions as well as synchronize processes without having to deal with
MPI-related overhead for communication. This implementation should provide
the user with the basic utilities of multi-process communication as a baseline,
and can be expanded in the future to allow for more flexibility in communication
methods.

Additionally, a new configuration option should be added for use in direct
communication: movement. By setting up movement parameters, the user
should be able to declare where certain boundary conditions are meant to be
sent to and from. This concept expands upon the idea of allowing access permis-
sions as the points declaration does, and allows the user more direct control over
data flow. Thus, the user will be able to predefine their planned movement and
thus have to deal less with defining these movement parameters mid-program,
allowing for cleaner adaptations of modules to the openDIEL.

3.2 Implementation

Direct communication is implemented in two ways: through the configuration
file and through a set of function calls. The configuration file sets up the sizes
and accessibility parameters of the shared boundary conditions to be used by
direct communication. The implementation for the configuration setup remains
from the previous implementation of direct communication, but has been altered
slightly to assign boundary conditions somewhat differently. This new setup
effectively grants the user full control over the shared boudnary conditions.

The new communication function calls added for direct communication will
now be described, followed by their implementation methodology. These calls
take two parameters: a pointer to an executive info structure, which is supplied
as the parameter to the module’s function and is the integral structure for most
IEL operations, and a target process integer that the process will be communi-
cating with. These functions return either an error or a success signifier.

• IEL send: This function sends whatever data is in the shared boundary
conditions to the process specified by the target. This call utilizes a stan-
dard non-blocking send. First, the function packs any shared boundary
conditions that the calling process can access into a contiguous buffer that
is set up during the configuration step automatically. This buffer is then
sent via MPI Isend to the target process.

• IEL recv: This function receives whatever data was in the shared bound-
ary conditions of the process specified by the target. This call utilizes a
standard blocking receive. First, the function utilizes MPI Probe to find
the size of the boundary condition buffer being sent, and then creates a
receive buffer to put the received data in. Then, the function receives
the boundary condition data using MPI Recv, and then unpacks this data
into the appropriate positions in the shared boundary conditions based

11

on where both communicating processes can access the shared boundary
conditions.

These functions can be called at any time in the module’s code, and allow the
user to send and receive data at will. A non-blocking send and a blocking receive
were chosen because while the sending process can pack and send the data in
that order and then continue through other code, the receiving process must
unpack the received data directly after receiving it. These functions also are
included in yet another wrapper function, which abstracts out the sending and
receiving calls when two processes intend only to swap their shared boundary
conditions. This function, IEL move, performs an IEL send call and then an
IEL recv call sequentially on the target process passed as a parameter.

The library also now includes synchronization function calls, which are just
wrappers around MPI barrier synchronization calls; these barrier synchroniza-
tion calls halt the continuation of the calling process until all other processes
in the specified MPI communicator also call the function. These functions take
an executive info structure as a parameter similar to the data transfer functions
described above and return either an error or success signifier. The synchro-
nization functions are as follows:

• IEL barrier: synchronizes all processes in the IEL

• IEL module barrier: synchronizes all processes in the calling process’s
module

• IEL group barrier: synchronizes all processes in the calling process’s
workflow group

These functions allow the user to synchronize code at will, allowing for more
control over communication calls.

To aid in the transportation of data to and from the shared boundary con-
dition, two new functions for direct communication are also contained in the
openDIEL.

• IEL insert bc allows the user to place data from any buffer into any
specified shared boundary condition.

• IEL copy bc allows the user to copy data from any specified shared
boundary condition into any given buffer.

By using these functions, the user can exchange local data with the shared
boundary conditions, and more easily facilitate data transfer without having to
deal with intricacies of placing the data into the boundary conditions.

3.3 Jacobi Example

A popular example of a communication-based adaption of an algorithm is the
Jacobi iteration method to solve a Laplace equation. This algorithm can be

12

adapted to run in parallel by dividing a matrix among multiple processes, with
each process performing calculations, communicating the boundaries of the ma-
trix between processes, performing calculations again, and so on [1]. By adapt-
ing this algorithm to work with the openDIEL’s direct communication, this
method provides a usable example for direct communication. The following di-
agram represents the grids on each process with the shared boundary conditions:

We can see from this diagram that only certain arrays need to be commu-
nicated; these arrays can be declared as shared boundary conditions by the
configuration files, then we can fill them with values from the matrix using
IEL insert bc for sending and place values back into the grid using IEL copy bc

13

after receiving. This simulation presents a concrete example of the use of bound-
ary conditions in communication, and a situation in which direct communication
would be appropriate.

14

Chapter 4

Future Plans

The openDIEL’s workflow and direct communication now provide basic func-
tionality, but we hope to improve these aspects in the future.

The task of scheduling workflow will be handed over to the tuple server
to allow for the dynamic scheduling of modules. The tuple server running on
MPI rank 0 (openDIEL Command Server) will operate in conjunction with the
other openDIEL processes in a server-client relationship, such that the com-
mand server will determine (from a list of user defined dependencies) which
modules are needed to run, and communicate the necessary information to any
non-occupied worker processes. Worker processes will communicate informa-
tion about the current job status back to the command server when they have
finished executing.

In addition to dynamic task scheduling techniques, advanced data I/O will
be integrated into the openDIEL as a part of the workflow engine. While the
openDIEL includes a plethora of interprocess communication functions (Tuple
Communications, Direct Communications), the user is still 100% responsible for
file I/O. In the future, we will provide file I/O handlers which, based on the
configuration file dependencies, can utilize high performance file I/O systems
such as HDF5 to optimize data transfers.

We plan to improve direct communication by implementing different send
and receive calls, such as possibly a blocking send and a nonblocking receive,
so that we may provide a wider range of use for the user to cover any potential
situation in which these calls might be necessary. We also plan to implement
different data storage options into direct communication, such as HDF5.

15

[1] Urbanic, John, 2011: Laplace MPI Template Version. Pittsburgh Super-
computing Center.

16

