
Workflow and Direct 
Communication in the 
openDIEL
(Distributive Interoperable Executive Library)

By Tanner Curren and Nicholas Moran

Mentor: Kwai Wong



What is the openDIEL?

•Open Distributive Interoperable Executive Library

•Provides a framework for using many components 
(modules) of a loosely coupled system

•Allows ease of access for communication between 
modules

•Portable and easy to implement into user code



Loosely Coupled Systems

•Systems with components that can require input from 
other components and output to other components

•Adaptions of serial code, so each module is self-contained 
aside from I/O

•Called modules; organized by workflow and communicate 
through Tuple Communication and Direct Communication



openDIEL Structure

•Split into two main 
sections: core libraries and 
user code

•Written in C, but modules 
can be in C, C++, and 
Fortran

•Configuration file uses 
libconfig library

openDIEL

Core Libraries User Code

Executive Communication Modules
Configuration 

File



*Diagram by
Jason Coan

openDIEL runtime organization



Using the openDIEL

•Create a configuration file

•Implement openDIEL
communication functions into 
modules
• Modmaker simplifies this process

•Example configuration file:

Module Specific 
Options

Information specific 
to each module, 

such as identifiers, 
the amount of 
processes each 

module requires, and 
any arguments that 
should be passed

Global Options

Specification of shared 
boundary condition 
array sizes and the 

tuple space size 
(number of processes)

Workflow 
Specification

Description of the 
workflow to be 

executed



Easily adapts user code into modules for a loosely coupled system

Standalone 
user code

User 
defined 
settings

ModMaker

Supported 
Languages:

• C
• C++
• Fortran

IEL-
compatible 

module

Driver 
Template

Makefiles

Configuration 
file template

User 
modifications to 

configuration

Executable

Final 
configuration 

file

R
u

n
tim

e
ModMaker



Workflow (Goals)

•openDIEL previously would launch 
each module simultaneously, and 
only once.

•Needed to devise a way for users to 
specify a workflow

•Retain compatibility with existing 
openDIEL components



Methods

Method 1

Method 2

Method 3



Methods

Method 1 



Workflow (Method 1)

•Achieves a workflow system 
without changing any code

•Adds a new function 
(IELStartWorkflow()) to replace the 
previous call to IELExecutive()

•IELStartWorkflow() will repeatedly call 
IELExecutive()

Read Config

Calculate next 
workflow step

Generate temporary IEL 
configuration

Call IELExecutive
with that 

configuration

IELStartWorkflow()



Methods

Method 2



Workflow (Method 2)

•Still not able to change any code

•Develops a dispatcher function

• Dispatcher uses the Tuple Server to coordinate modules to 
start/stop via signals, and accesses the function map to run 
modules

•All modules are started at the same time, and are 
therefore not able to reuse processes



Workflow (Method 2 continued)

•Dispatcher function reads configuration 
file

•Waits for preconditions to be satisfied

• Runs module

•Signals next modules

Read Config

Wait for conditions 
(signals

Run Module

Send Signals



Methods

Method 3



Workflow (Method 3)

•Makes changes to how the IEL Executive works

•Changes the configuration file to include a workflow section

•Splits modules into groups. Each represents a collection of modules that 
will execute in the user specified order



Workflow (Method 3 continued)

•User can specify any number of groups

•Each group will take on the size (# mpi ranks) 
of the maximum sized module within

•The “iterations” property can be set to 
determine how many times a group of 
modules will repeat. A module can access 
the current group iteration.



Workflow Use Case

•EnergyPlus produces ouput data

•ReadVars extracts the necessary 
variable based on arguments passed 
into the openDIEL

•An R script performs statistical 
analysis on the resulting dataset

P
-0 R Analysis

P-0

EnergyPlus

Readvars

P-511

EnergyPlus

Readvars

P-...

EnergyPlus

Readvars



Communications in openDIEL

•Currently utilizes two methods of communication: tuple 
and direct

•Tuple communication sends user-specified data intended 
for transfer to a process set aside as a tuple server, then 
other processes take data from the tuple server’s queue

•Direct communication sends data stored as boundary 
conditions directly to other processes; more useful for 
sending larger chunks of data

•All communications use MPI (Message Passing Interface) 
wrappers

*Diagram by
Jason Coan



•Based on an already-existing 
implementation, now has many 
improvements

•Utilizes shared boundary conditions to 
move data

•Set up via configuration file; usable 
like a two-dimensional array

•Processes given certain access to 
certain boundary conditions to 
modify, send, and receive

•Movement parameters specify which 
conditions are sent to where

Jacobi Example: Shared Boundaries



Jacobi Example: Shared Boundaries
Use of Jacobi iterations to solve a 
Laplace equation

Each process works with part of a 
Matrix



. . . 

Jacobi Example: Shared Boundaries
Use of Jacobi iterations to solve a 
Laplace equation

Each process works with part of a 
Matrix



Jacobi Example: Shared Boundaries
Use of Jacobi iterations to solve a 
Laplace equation

Each process works with part of a 
Matrix



Use of Jacobi iterations to solve a 
Laplace equation

Each process works with part of a 
Matrix

Jacobi Example: Shared Boundaries



Direct Communication Data Transfer

•The openDIEL uses a set of functions for direct communication

•These functions are placed into modules

• IEL_send, IEL_recv, and IEL_move transfer data 

• IEL_send is nonblocking while IEL_recv is blocking; thus, when receiving, a 
process will wait until data is sent

• IEL_move will both send and receive, making communication synchronous

•These functions require only two parameters: executive info (which 
is passed as the module’s argument) and target process



Jacobi Example: Communication Algorithm

1. Set up matrices on each process

2. Perform calculations on each process

3. Put data into boundary conditions using 
IEL_insert_bc

4. Move data between each set of adjacent 
processes with IEL_move

5. Put data back into matrices using 
IEL_copy_bc

6. Synchronize processes with IEL_barrier

7. Repeat for a specified number of 
iterations Credit to John Urbanic of 

PSC for original parallel 
Jacobi algorithm



Differences Between openDIEL Module and Original MPI Code

Done by
executive



Different Multiphysics Simulations
Stochastic Disaster Planning with Symphony 

and PSUADE
Cardiac Electrophysiology Modeling

Agent-Based Modeling with Repast



Conclusions

•The openDIEL provides a framework for multiphysics simulations set up in a 
loosely coupled system of modules.

•The openDIEL is now able to be configured to run concurrently and 
sequentially via workflow options in the configuration file

•The openDIEL is also now able to communicate large contiguous amounts of 
data through shared boundary conditions via direct communication functions.



Future Plans for openDIEL

•Adding more user options for direct communications

• Nonblocking receives, many-to-many communication

•Updating Tuple communication to work with scaling and to cooperate with 
direct communication

•Expanding Tuple server to contain a makefile-like list of workflow 
dependencies

•Implementing a working GUI that contains all of the newly implemented 
features



Acknowledgements

Mentor: Kwai Wong

Additional Assistance: Jason Coan

Original Parallel Jacobi Algorithm: John Urbanic, PSC

NSF

JICS

UTK

ORNL


