Workflow and Direct
Communication in the

openDIEL

HE JNIVERSITYof M 0
TENNESSEE aryyille

LLLLLLLLL

What is the openDIEL?

*Open Distributive Interoperable Executive Library

*Provides a framework for using many components
(modules) of a loosely coupled system

*Allows ease of access for communication between
modules

*Portable and easy to implement into user code

Loosely Coupled Systems

*Systems with components that can require input from
other components and output to other components

*Adaptions of serial code, so each module is self-contained
aside from 1/0O

*Called modules; organized by workflow and communicate
through Tuple Communication and Direct Communication

openDIEL Structure openDIEL

sections: core libraries and

*Split into two main /
user code

*\Written in C, but modules
can be in C, C++, and
Fortran

*Configuration file use
libconfig library

openDIEL runtime organization

Specifies
.cfg file

The driver calls;ithe executive
for each process, supplying
the name of the configuration
fileas an i;'gument

loads modules

COMMLIB

*Diagram by
Jason Coan

1
1
=l o e o e e

Communication

Using the openDIEL

*Create a configuration file

*Implement openDIEL
communication functions into
modules

* Modmaker simplifies this process

*Example configuration file:

shared_bc_sizes = []
tuple_space_size=0

modules=(

function="modep7"

args=0Q

1libtype="static"
Tibrary="T1ibmodep7.a"
splitdir="ep7-rv-workflow"
size=512

function="modreadvars"
args=C"in.rvi", "monthly")
1ibtype="static"
splitdir="ep7-rv-workflow"
Tibrary="11ibmodreadvars.a"
size=512

function="RAnalysis"
args=0)
Tibtype="static"
library="1ibRAnalysis.a"

splitdir="ep7-rv-r-workflow"

size=1
}
3

workflow:

groups:

ep7-readvars:

order=("modep7", "modreadvars")

RAnalysis:

order=("RAnalysis")

Global Options

Specification of shared
boundary condition
array sizes and the

tuple space size

(number of processes)

Module Specific
Options

Information specific
to each module,
such as identifiers,
the amount of
processes each
module requires, and
any arguments that
should be passed

Workflow
Specification

Description of the
workflow to be
executed

|\/|Od Maker Easily adapts user code into modules for a loosely coupled system

Standalone
user code

User
defined
settings

ModMaker

Supported
Languages:

C
e C++
Fortran

Configuration

file template

|EL-
compatible
module

Driver
Template

= -

User
modifications to
configuration

_ & Executable

Final
configuration
file

- <

awinuny

Workflow (Goals)

The driver callsthe executive
for each process, supplying
the name of the configuration

*openDIEL previously would launch
each module simultaneously, and
only once.

*Needed to devise a way for users to
specify a workflow

*Retain compatibility with existing 8 Lim—p—--- |
openDIEL components

Communication

Methods

Method 1
Linked in to the

Method 2 driver at AddModule FirstModule_static
compile time_~7

Method 3

Executive

Static

de U |E FirstModule FirstModule
libraries (static) (dynamic)

MPI_Finalize

Methods

Method 1

Linked in to the
driver at AddModule FirstModule_static

compiletime

Executive Conflgl.cfg

Static
module
libraries

FirstModule FirstModule

(static) (dynamic)

MPI_Finalize

|[ELStartWorkflow()

Workflow (Method 1)

Read Config

*Achieves a workflow system
without changing any code

Calculate next

workflow step

*Adds a new function
(IELStartWorkflow()) to replace the
previous call to IELExecutive() Generate temporary IEL

configuration

|ELStartWorkflow() will repeatedly call

|E|_EX€CUtive() Call IELExicutive
with that

configuration

Methods

Method 2

Linked in to the
driver at AddModule FirstModule_static

compiletime

Executive Conflgl.cfg

Static
module
libraries

FirstModule FirstModule

(static) (dynamic)

MPI_Finalize

Workflow (Method 2)

*Still not able to change any code
*Develops a dispatcher function

* Dispatcher uses the Tuple Server to coordinate modules to

start/stop via signals, and accesses the function map to run
modules

*All modules are started at the same time, and are
therefore not able to reuse processes

Workflow (Method 2 continued)

*Dispatcher function reads configuration
file

Read Config

Wait for conditions

*\Waits for preconditions to be satisfied (signals

* Runs module

*Signals next modules

U
T
U
B

Send Signals

Methods

Linked in to the
driver at AddModule FirstModule_static

compiletime

Method 3

Executive

Static

de U |E FirstModule FirstModule
libraries (static) (dynamic)

MPI_Finalize

Workflow (Method 3)

*Makes changes to how the IEL Executive works
*Changes the configuration file to include a workflow section

*Splits modules into groups. Each represents a collection of modules that
will execute in the user specified order

Workflow (Method 3 continued)

*User can specify any number of groups \j[vorkﬂ ow:

*Each group will take on the size (# mpiranks) groups:

of the maximum sized module within
ep7-readvars:

*The “iterations” property can be set to

: _ order=("modep7", "modreadvars™)
determine how many times a group of ¥ .
: RAnalysis:
modules will repeat. A module can access [_
the current group iteration. onder=C"RAnalysis)

}
}

Workflow Use Case (Q

EnerayPius

P-0

P-511

*EnergyPlus produces ouput data

EnergyPlus EnergyPlus

EnergyPlus
*ReadVars extracts the necessary
variable based on arguments passed

into the openDIEL
*An R script performs statistical l l

analysis on the resulting dataset l
Y

Communications in openDIEL

*Currently utilizes two methods of communication: tuple

and direct

*Tuple communication sends user-specified data intended
for transfer to a process set aside as a tuple server, then
other processes take data from the tuple server’s queue

*Direct communication sends data stored as boundary
conditions directly to other processes; more useful for
sending larger chunks of data

*All communications use MPI (Message Passing Interface)

wrappers

Tuple Comm

Config
File

Executive

IEL_Exec_TS_init()
IEL INFO,
Module INFO,
Tuple INFO

2oeds ajdn)

c
=
m
wn
1)
<
1
-y

Tput (Data)

Tget (Data)

Asynchronous exchange, one

way communication

*Diagram by
Jason Coan

Jacobi Example: Shared Boundaries

shared bc sizes = [le, 16, 16, le, 16, 16]

*Based on an already-existing tuple space size = 0
implementation, now has many modules = (
: {
ImprOvementS function = "jacobi";

r. .. iirgiy;)e”:’“static“;
*Utilizes shared boundary conditions to Library = "libjacobi.a”;
move data points = (

(([0,1e1), ([0,16]), ([0,01), ([O0,01), ([0,01),
]])) ([0,01)),

°$et up via cc.)nﬂgu.ratlon file; usable el ety (oiers o1ty ooy
like a two-dimensional array (10,01,

((ro,01), (10,01}, ([0, 16]), ([O,16]), ([O,16]),
([0,161)),

*Processes given certain access to
certain boundary conditions to Hlorzeryy o oo LB, (LD, 20
modify, send, and receive ;

}
)
*Movement parameters specify which movenent = (
conditions are sent to where (1, (o,

(L0,
(L0,
(L0,
(L0,

Jacobi Example: Shared Boundaries

Use of Jacobi iterations to solve a
Laplace equat|on shared bc sizes

tuple space size

Each process works with part of a nodules =
i — function = "jacobi";
Matrix Function -
libtype = "static";
PO
library = "libjacobi.a";
Shared bc @ size = 4;
Shared bc 1 _ points = (
(([0,16]), ([O,186]), ([0,0]), ([O0,01),([0,01),
—_ ([0, 01)),
Shared bc @
Shared be 1 [([0,161), ([0,16]), ([0,16]), ([0,01),
0
PQ
Shared bc 2
Shared bc 3)
Shared bc 2)
Shared bc 3
PO
Shared bc 4
Shared bc 5) movement
(0,
—_ (1,
Shared bc 4 (2,
Shared bc 5 (3,
PO (4,
(5,

Jacobi Example: Shared Boundaries
Use of Jacobi iterations to solve a

Laplace equat|on shared bc sizes

tuple space size

Each process works with part of a modules =
i function = "j
Matrix args = () ;
Pe libtype =
library VYlibjacopi.a";
Shared bc 0 size =
Shared bc 1 points
(([0,161),([0,16]1),([0,01), ([0,01),([0,01),
([O0,01)),
Shared bc 0
Shared be (10,161), (10,161), ([0,161), ([0,01),
PO
Shared bc 2
Shared bc 3
Shared bc 2
Shared bc 3
PO
Shared bc 4
Shared bc 5 movement
(0,
(1,
Shared bc 4 (2,
Shared bc 5 (3,
PO (4,
(5,

Jacobi Example: Shared Boundaries

Use of Jacobi iterations to solve a
Laplace equation

Each process works with part of a
Matrix

PO

Shared bc 0
Shared bc 1

Shared bc 0
Shared bc 1

PO

Shared bc 2 AN

Shared bc 3

Shared bc 2
Shared bc 3

PO

Shared bc 4
Shared bc 5

Shared bc 4
Shared bc 5

PO

shared bc sizes = [le, 16, 16, le, 16, 16]
tuple space size = 0;

modules = (
{
function = "jacobi";
args = ()7
libtype = "static";
library = "libjacobi.a";
size = 4;
points = (
((f0,1e1), ([0,16]1), ([0,01), ([0,01), ([0,01),
([0,01)

(([0,16]),([0,16]),([0,16]1),([0,16]1), ([0,0]),
(L0,01))

; r ([0,01), ([0,1e]), ([0,1e]), ([0,16]),
([0,161)),

(0,01), (L0,01), ([0,01), ([0,16]),

) ;

}

)

movement = (
(0, ([0, 161), (0), (1)),
(L, ([0, 1el), (1), (O)),
(2, ([0, 1el), (1), (2)),
(3, ([0, 161), (2), (1)),
(4, ([0, 16l), (2), (3)),
(5, ([0, 1el), (3), (2))

Jacobi Example: Shared Boundaries

Use of Jacobi iterations to solve a
Laplace equation

Each process works with part of a
Matrix

PO

Shared bc 0
Shared bc 1

Shared bc 0 0 I
Shared bc 1

PO

Shared bc 2
Shared bc 3

Shared bc 2
Shared bc 3

PO

Shared bc 4
Shared bc 5

Shared bc 4
Shared bc 5

PO

shared bc sizes = [le, 16, 16, leo, 16, 16]
tuple space size =

modules = (
{
function = "jacgbi";
args = ()7
libtype = "static";
library = "libjacobi.a";
size = 4;
points = (
(([0,1e1), ((0,1e]), ([0,01), ([O0,01), ([0,01),
([0,01)),
((fo,1e1),([0,1e1), ([0,161), ([O,16]1), ([0,01),
([0,01)),
(¢fo,01),(ro,o1), (1o,1ej), (10,1e]), ([0,10]),
([0,161)),
(¢ro,01),(1o6,01), (10,01), (10,01), (10,161},
([0,16])
);
}
)
movement = (
(0, ([0, 1el), (0), (1)),
(L, ([0, 1el), (1), (0)),
(2, ([0, 1el), (L), (2)),
(3, ([0, 161), (2), (1)),
(4, ([0, 1el), (2), (3)),
(5, ([0, 1el), (3), (2))

Direct Communication Data Transfer

*The openDIEL uses a set of functions for direct communication

*These functions are placed into modules
* |EL send, IEL_recv, and IEL_move transfer data

* |EL_send is nonblocking while IEL_recv is blocking; thus, when receiving, a
process will wait until data is sent

* |EL_move will both send and receive, making communication synchronous

*These functions require only two parameters: executive info (which
is passed as the module’s argument) and target process

Jacobi Example: Communication Algorithm

1. Set up matrices on each process

PO

T 2. Perform calculations on each process

e 3. Put data into boundary conditions using

Shared be L IEL insert_bc
PO

Shared b 4. Move data between each set of adjacent

BE— processes with |IEL_move

Shareq b3 5. Put data back into matrices using
- IEL_copy_bc

Shared bc 4 . . o

Shared be 5 6. Synchronize processes with |[EL_barrier

Shared b 7. Repeat for a specified number of

2hared be o iterations Credit to John Urbanic of
PO PSC for original parallel

Jacobi algorithm

Differences Between openDIEL Module and Original MPI Code

int main(int argc, char **argv) {
/* Variable declarations would go here */

int jacobi (IEL exec info t *exec info) —
- - - - /* Initialize MPI */

{ /* bl decl . 14 h */ MPI Tnit(&argc, &argv);
Variable declarations wou go here /* Determine size of global communicator */
MPI Comm size (MPI_ COMM WORLD, &npes);
// Set edges & shared boundary conditions D b /* Determine my rank in the global communicator */
initialize (t); one y MPI Comm rank (MPI COMM WORLD, &mype);
xecutiv
i i execu e if (npes != NPES) { /* Currently hardcoded */
copy into bc(t, exec info); MPI Finalize () ;
1if(mype == 0)
/* Calculations code would go here*/ fprintf (stderr, "The example is only for %d PEs\n", NPES);
exit (1) ;
// Copy values into boundary conditions before communicating —L
copy into bc(t, exec info); initialize (t); /* Give initial guesss of 0. */
// Exchange data with the process below /* Calculations code would go here*/
it {(myRank != NPES - 1) 1t (mype < npes—1)
IEL_move(exec_lnfo, myRank + 1); /* Send my data down to the processor below me; Only npes-1 do this */
// Exchange data with the process above MPI Send (&t [NRL][1], NC, MPI FLOAT, mype+l, DOWN, MPI COMM WORLD) ;
if (myRank != 0) if(mype != 0)
IEL move (exec info, myRank - 1); /* Sending my data up to the processor above me ; Only npes-1 do this */
— — MPI Send(&t[1][1], NC, MPI FLOAT, mype-1, UP, MPI COMM WORLD) ;
. . if(mype !'= 0)
// Place the Communlce_ltEd values back into t /* Receive new data from UP processor of any source */
copy from bc(t, exec info); MPTI Recv(&t[0]1[1], NC, MPI FLOAT, MPI ANY SOURCE, DOWN,
MPI COMM WORLD, é&status);
// Synchronize all processes in the IEL S if(mype != gpes—i) . y
. . . Receive new data from DOWN processsor of any source
IEL barrier(exec_info); MPI Recv (&t [NRL+1]([1], NC, MPI FLOAT, MPI ANY SOURCE, UP,
} MPI COMM WORLD, &status);
return EXIT_SUCCESS; /* All processors in the global communicator wait at the barrier */

MPI Barrier (MPI_ COMM WORLD);

}

MPI Finalize(); /* Finalize MPI */
1

Different Multiphysics Simulations

Stochastic Disaster Planning with Symphony _ | |
and PSUADE Cardiac Electrophysiology Modeling

Time Loop
Solve Relaxed Master Problem E] 1

Surface Connectivity Data Exc ng
Add feasibility Add feasibility I e ;‘“' el S I s
cuts and cuts and ‘ ‘ | Update '
optimality cuts Add feasibility optimality cuts Original Excctionil 4 Elt?ctro = ‘ In?ernal Pre-)
cuts and Mesh !—>> Start | P Phy;::i‘llzglcal p-nﬂ‘ Geometry with ~> ProiesTlng Fluid Solver
Al VEL Allocate Allocate . SMSH N
Allocate . o = l J &
recourse recourse recourse A Sub wdu es : ‘ -
problems problems problems l — ~ Nodal . Parallel \
Dl 12,1 Dl n, +1, n,_,+1, —> Cell Model ~ Mapping _ Input Files Objective
ny+2,..,1n; N1 + 2, .., Np) Configuration — l evaluator
Solve Recourse Solve Recourse Solve Recourse File | P — r——
Problems Problems Problems ™™ Diffusion ‘ Mesh
Paramofor ~ Mechanical |
Adjutification ee—) —
10ms 1ims -j

Agent-Based Modeling with Repast 1 %b,% X+ A

. evaluator 20ms o
Data ‘ -
r | Analysis ” A

/

Conclusions

*The openDIEL provides a framework for multiphysics simulations set up in a
loosely coupled system of modules.

*The openDIEL is now able to be configured to run concurrently and
sequentially via workflow options in the configuration file

*The openDIEL is also now able to communicate large contiguous amounts of
data through shared boundary conditions via direct communication functions.

Future Plans for openDIEL

*Adding more user options for direct communications

* Nonblocking receives, many-to-many communication

*Updating Tuple communication to work with scaling and to cooperate with
direct communication

*Expanding Tuple server to contain a makefile-like list of workflow
dependencies

*Implementing a working GUI that contains all of the newly implemented
features

Acknowledgements

Mentor: Kwai Wong

Additional Assistance: Jason Coan

Original Parallel Jacobi Algorithm: John Urbanic, PSC
NSF

JICS

UTK

ORNL

