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DGEMM 40.0 PDGEMM 38.2 23.5 18.3 

DPOTRF 6.7 PDPOTRF 7.4 5.0 3.6 

DPOTRI 25.1 PDPOTRI 23.0 21.1 16.8 

DSYEV 365.2 PDSYEV 259.2 190.4 151.2 

DSYEVD 254.6* PDSYEVD 215.5 89.6 71.2 
DSYGVD 333.1 PDSYGVX 185.6 136.5 105.9 

DFTB+ is being used 

to find out why a 

graphene membrane 

is rupturing under an 

electric field.  When 

an electric field of      

3 V/nm is applied to a 

graphene membrane 

s u s p e n d e d i n a          

1 M KCl solution, the 

membrane ruptures 

c a t a s t r o p h i c a l l y, 

sometimes ripping 

completely in half. 

To simulate a 3 V/nm electric field in DFTB+, a 15 eV point charge is 

placed 100 Å away, along a vector normal to the membrane. A -15 eV 

point charge mirrors the first on the other side of the membrane. Below 

is the flat membrane before (left) and after (right) the MD simulation.	  
	  

Several different variations of graphene membranes are being tested 

under varying conditions using molecular dynamics (MD) simulations.  

Below are the input and output geometries of a warped membrane. 

The most computationally expensive 

component of DFTB code is its linear 

algebra operations. 

Current DFTB code utilizes LAPACK (Linear Algebra Package) function 

calls to perform its linear algebra operations such as matrix-matrix 

multiplication, Cholesky factorization, and diagonalization. By replacing 

the LAPACK routines with ScaLAPACK (Scalable LAPACK) routines, 

the calculation speed can be improved. ScaLAPACK has the advantage 

of distributing the matrix data in a block-cyclic fashion to processors 

running in parallel.  
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A comparison of operations on a 16834 X 16834 matrix showed 

ScaLAPACK calls were faster. Their efficiency can be further improved 

by increasing the number of processes and threads. 

Linear	  Algebra	  Opera8ons	  Time	  Usage	  

Density Functional Tight Binding (DFTB) is being 

used to find the cause of the catastrophic rupture of 

a graphene membrane under the effect of an 

electric field.  Efforts are also being made to 

increase the computational efficiency of the program 

by replacing LAPACK calls with ScaLAPACK calls.  

Simulations of the defective 

membrane exhibi ted more 

folding than pristine membranes.  
All	  calcula8ons	  performed	  on	  Beacon,	  except	  those	  marked	  with	  *,	  which	  were	  performed	  on	  Darter	  

§  Handling Matrices 
§  Electronic Structure 
§  Forces 

Ongoing simulations will attempt to force an ion through the membrane.	  
	  

As conditions for the calculations 

become more complex the time also 

increases.   
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Below are the input and output geometries of a defective membrane. 

These can be seen in the above 

table. Simulations are run on Beacon 

using Intel’s multi-threaded MKL.  

	  

Changes in the membranes’ energies were recorded during MD 

simulations. The energy plots of the flat (left) and defective membranes 

(right) were virtually identical.	  


