Agent Based Visualization of C.
Elegans Embryogenesis at
Cellular Resolution

-by Kison Osborne

Introduction:

The main goal of this project is to be able to accurately simulate the embryonic stages of
the C. Elegans, using RepastHPC as a way to enhance computing through parallelization and a
way to visualize the data generated by the RepastHPC code. The ultimate end goal of the project

is be able to learn more about diseases that plague human beings.

Background:

C. Elegans is a primitive multicellular organism (worm) that shares many important
biological characteristics that arise as complications within human beings.' It begins as a single
cell and then undergoes a complex embryogenesis to form a complete animal. Using
experimental data, the early stages of life of the cells are simulated by computers. The goal of
this project is to use this simulation to compare the embryogenesis stage of C. Elegans cells with
that of human cells. Since the simulation involves the manipulation of many files and large

amounts of data, the power provided by supercomputers and parallel programming is required.

Current Status:

Thus far, I have managed to take the files generated through by the old Netlogo code and
the new RepastHPC code (I call them Nuclei files) and parse them for the data that is most
relevant for the visualization (such as location, size, and name) through the use of python scripts.
This parsed data is written to point3d files, which Vislt can read and produce images of.
Depending on the python script used to parse the Nuclei files I may implement other features

into the visualization, such as cell tracking and coloring each cell depending on their parent cell.

I have also started to create a graphical user interface (GUI) that will streamline the RepastHPC

code, python code and Vislt display into one user-friendly interface.

Python Scripts:

The files that come from the RepastHPC code is unable to be read easily by Vislt for
visualization. These nuclei files (as I refer to them) are formatted such that there is a lot of
information that is unimport when it comes to the visualization of that cell when using Vislt. The
nuclei files are formatted as shown, where each line of information represents one cell and each

column (separated by commas) represents a certain quality of the cell.

, 2, 2, -1, -0.858771, -5.67441, -1.13391, 2.69986, "ABarp",
r O r r OJ’ Oi’ Ol r Oi’ r Ol
oo -1, 58.99198, 3.55359, -0.279014, 2.43646, "Ep", 0, O,

ATy I Ml
y , -1, 8.10036, -1.74798, 2.67941, 2.56816, "ABprp", 0,
] T T TR T

, 1, 11, 11, 11, -2.8105, -4.63722, 2.26936, 2.69986, "ABara",
O Oi’ O r I OJ’ Oi’ Ol r Oi’ r Ol

12, -10.3246, 0.902684, 1.60153, 2.69986, "ABala",
r I OJ’ Oi’ Ol r Oi’ r Ol

, -1, —-0.321074, 4.19406, -3.37117, 2.56816, "ABplp",

0, 0, 0O 0 0

RS 5 5 = = =
H o JoM

B~
o
=
8}
=
S}

r

, 9, —-4.65803, 0.753715, -3.54214, 2.56816, "ABpla", O,
. 10, A, 4, 0, , 0,
, 6, -1, —7.96281, 4.69369, 0.599455, 2.69986, "ABalp", 0,
r r Ol OJ’ Oi’ r Ol r Oi’
, 14, 14, 14, B8.89825, 3.58228, -0.256163, 2.43646, "Ea", O,
r Ol OJ’ Oi’ r Ol r Oi’
1, 3, 3, -1, 2.27465, 3.52582, 1.57864, 2.43646, "Msp", 0, O,
Oi’

r ror ror ’

o R S AR

r

r r

r O r r Ol OJ’ r Oi’ r Oi’

o, 1, 10, 10, 10, 5.40742, -4.98538, 2.50359, 2.56816, "ABpra",
sl 0, e, L0, B, Q. 10,

, 1, 4, 4, -1, 11.6828, 2.63428, 0.944602, 2.80053, "p3", 0, O,
S o L oA T (N o S o)

3, i, 13, 13, A3, 1.77554; 3.83512; 1.50167, 2.436%6;, “"M53", O,
r Oi’ O r Ol OJ’ Oi’ r OJ’ r Oi’

r

WO R OoOROFOWDFEFO0DWonoEoRDRFO-]OoN

r
1, 8, 8, 8, 6.15657, -1.7066, —-2.69015, 2.80053, "c", 0, 0, O,
r Ol r Oi’ r Oi’

As stated before, not all of this information is needed to visualize the cells. For the

method I use, the only information needed for each cell is the cell’s validity, x coordinate, y

coordinate, z coordinate, size, and name. This information is represented by the 2nd, 6th, 7th,
8th, 9th, and 10th columns respectively in the nuclei file. Now that I had an idea of what
information I would need, I needed to decide what kind of file could be read by Vislt and
incorporated the most important of this data. What I eventually decided on was the Point3d file
format.

Point3d files are usually used to show information about points on some type of 3d grid.
The files are formatted similarly to the nuclei files where each line in the file represents one
point (cell in our case) and each column represents an aspect of that cell. Unlike the nuclei files,
the point3d files only consist of four columns of information. The first three columns are
reserved for the cell’s x, y, and z coordinates while the fourth/final column is left to hold that
cell’s variable. This variable can be used to illustrate anything about the cell while the first three
columns will always represent the cell coordinates. For my purposes, I used this variable to show
the cell’s size or color. Last but not least, this type of file is able to be easily read and displayed

by Vislt.

File Edit Format View Help

kyz var
-4.33342 1.9783 -3.49675 100

6.46939 -1.52136 -2.37814 ©
-8.883161 -5.72977 -1.00291 50
-8.24692 4.49588 ©.658714 50
2.3284 3.,71282 1.53047 75
5.65049 -4.,8762 2.52926 1080
11.6293 2.53173 1.01563 @
2.19009 3.79853 1.50914 75
-10.3253 1.1598 1.54054 50
-@.499773 4.11939 -3.34562 100
-2.60528 -4.8146 1.99998 50
8.82555 3.59902 -0.221151 75
8.02156 -2.02575 2.68406 100

To extract data from the nuclei files and store it into point3d files, I needed to use python

scripts. To be exact, two python scripts. One script allowed for the implementation of cell

tracking, while the other allowed each cell in each file to be colored differently based on its
parent, these features will be explained more later.'

This script takes in as input a division table (which is basically a list of all the cells that
will ever be created in the simulation), a location for the point3d files to be stored and the name
of a cell, all provided by the user. The script takes the given cell name and searches for it in the
division table. When it is found, the program takes the name of the parent and children of the cell
(which are given by the division table) and puts them in a list with the starting cell. The program
then uses the ‘Find_Children’ and ‘Find_Ancestor’ functions to find all of the cells that preceded
the starting cell and all the cell that spawn from it. Once that is done, the program loops through
all of the given nuclei files and proceeds to transform each one into a point3d file. While doing
this, the script gives each cell in each file a value based on if it is in the list with the starting cell.
This essentially makes it so that when the point3d files are eventually displayed all of the starting
cell’s children and ancestors are shown differently from the other cells. This allows the user to
track the lineage of a particular cell throughout the simulation.

The other python script mentioned uses very similar techniques. Only in this script, each
of the starting cells in the simulation are given their own value, which is then passed down to its
children. This makes it so that each cell in the simulation will be displayed in one out of n colors
(where n is the number of starting cells), illustrating what cell it originally spawned from at the

start of the simulation.

<
—t
(2]

—

Vislt is an open-source program that can take in many different file types and display the
data in said files in different ways (graphs, 3d models, maps, etc). To do this, Vislt reads the
information in the file(s) that is(are) being opened depending on their file type and displays is
depending on the plot and settings that the user sets for their data. This manual will show how to
open a database (a bunch of files) in Vislt, set up a plot, and display through Vislts visualization
window.

As mentioned before, Vislt can open many different file types but for this tutorial I will
be using Point3d files (which are formatted as shown). This type of file represents the data for
various points. Each line represents a point and the first three columns represents that points X, y,
and z coordinates respectively. The fourth column represents a variable given to that point to
show some quality (such as size). In this particular example, the ‘var’ column represents the

color that point will be displayed as when displayed by Vislt.

File Edit Format View Help

ky z var
-4.33342 1.0783 -3.49675 100

6.46939 -1.52136 -2.37814 @
-9.883161 -5.72977 -1.00291 5@
-8.24692 4.49588 ©.658714 50
2.3284 3,71282 1.53047 75
5.65049 -4,.8762 2.52926 10@
11.6293 2.53173 1.01563 @
2.190@9 3.79853 1.50914 75
-10.3253 1.1598 1.54054 5@
-@.499773 4.11939 -3.34562 100
-2.68528 -4.8146 1.99998 5@
8.82555 3.59902 -@.221151 75
8.02156 -2.02575 2.63406 10@

When opening Vislt, you’ll be greeted with two windows. One is the graphical user
interface(GUI) window, where you will set your plot and the other is the visualization window

(where the plots display). To open a file for display, click ‘Open’ in Vislts GUI window. Then,

in the window that opens, navigate to the file you wish to open and click ‘OK’. To open a
database, follow the same steps except you should make sure that the ‘File Grouping’ option in
the window that appears when you click ‘Open’ is set to smart. Also, make sure that the group of

you want to open are in the same folder and are named similarly.

¥ vist270 — B Window 1
File Controls Options Windows PlotAtts = ' @ @m B E = @ f & & ﬁ ﬁ il i ﬂ el) d <o) |) |
Global G — &
R L LS EwOIl
Active window Il_'/ [[] Auto apply :

Sources

gE e § @

Open Close Reopen | Replace Overlay

Active source ¥
Time
-l -4 | > >
Plots
™% opis) @ B 4 B Host | localhost
q.: defe kﬁ / " » g
Add, Operators, Delete Hide/Show Draw] Path !C:\Pythonﬂ\data files
Filter |*
["] use "current working directory” by default — |
File grouping Smart '| 'Remove paths . . |
["] show dot files i —
Directories Files
Apply to (®) active window () all windows
. (current directory) e data*.3d database
| Apply operators to all plots 3 -
grre - . (go up 1 directory level) (156 total files)
Apply subset selections to all plots datal.3d

data2.3d
data3.3d
data4.3d
data5.3d

data152.3d

Open file as type: |Guess from file name/extension | Set default open options...

| Refresh | 0K

To add a plot to display the information stored in the file(s), simply click the ‘Add’
button in the GUI window. This brings up a list of numerous plots you can add, but for this

tutorial we will add a pseudocolor plot. To this scroll down to ‘Pseudocolor’ and for this

example we will click “vars’ in the menu that pops up to ensure that the plot that displays
includes our points’ variable. After this is done, you should notice some text appear in the box
under the ‘Add’ button in the GUI window. Clicking on the arrow will drop down a list of all the
plots associated with your file (in this case all that would appear is ‘Pseudocolor’). Double

clicking on the text will bling up that plots options for you to customize to your liking.

; =
File Controls Options Windows PlotAtts ﬂ ViSItZYO
Global
Active: winviow: |1 | [autoapety | | File Controls Options Windows Plothtts » W‘ Geametry
]
Sources
Global
s 8§ @ Le
Open Close Reopen Replace Owerlay Amvewmdﬂwm DAmoﬁpph‘
Active source | data*.3d database - Co—
Em [ooos | s Line stle ‘—solid il Ling widh !—1 |
[« [« J[= J[» [[] wq&‘%(ﬁ ‘ ‘
Plots o/ _| o
B rH L B & . Open Close Reapen Replace Overlay :
Add,| Operators, Delete Hide/Show Draw Faint
£} oty ’ Actwesource|data‘.3ddatabase v B
© Contour 2 Foirt type ‘Sphere(;eometry v Foint size
B curve » . S
. Filled Boundary > Tlme
il | Histogram P | i@ I Scale paint sze byvariable defaut
& ' I wg | || Osckpitsity
E Mesh 3
% o ; ‘« « 1 ‘ler‘ _
MultiCurve w0 e — Rendering
ﬁil Parallel Coordinates 4 ‘
|i Pseudocolor 2 operators Pfots
E Scatter L4 time_derivative
IR | spreadsheet i opld k i/ J‘ Smacthing o) one () st () tigh
<@ Streamline » X +II [»
W subset 2 2 Add, Operafors, Delefe Hice/Show Draw
#' | Tensor 4 =
- Truecolor 4
S vector , }‘d%mcco or-ar
| : ke defaul ‘ Load H Sae H Reset ‘
T | —
o R ‘

To draw your plot is as easy as clicking ‘Draw’ on the VisIt GUI window. If you opened
a database you can use the arrows on the GUI window to navigate between the various files. You
can also add operators to your plots to change its various aspects. This can be done by following

similar steps to opening a plot, but you would click ‘Operators’ instead of ‘Add’.

Window 1 -0
File Controls Options Windows PlotAtts » ﬁ@@m BoeE e B R @aﬁﬁi‘ejﬁﬁ“ 4 4« E) » > &2

Global @G\ R hE Y BROI
Active window |1 7 [Auto apply
St DB: data50.3d
BGH & O Cycle: 0

Open Close Reopen Replace Overlay Pesudocolor

Var var
Active source |data*.3d database ¥ .0
Time | saee
0003
« « [w][> » [o

Flots

T L % 4

Add, Operators, Delets Hide/Show Draw

P 1 lpseudocolorvar]

Apply to (®) active window () all windows
Apply aperators to all plots
Apply subset selections to all plots

user: Kison
[z Tue Jul 07 12:41:24 2015

Netbeans IDE:

So far the process of getting a Vislt display is something like this: running RepastHPC to
create nuclei files, taking those nuclei file and run a python script to create point3d file, then
finally opening Vislt and it display the point3d files. This can be a bit tedious to do this it
involves running three different programs and a bit of managment. This is where the Netbeans
IDE comes into play. Netbeans is used to create a java graphical user interface to streamline the
process of running the RepastHPC simulation and displaying the results to Vislt.

The reason for picking netbeans to create the GUI for now is simple: I know very little

about java programming. Netbeans allows a user to create a java GUI without having to worry

about the java code that goes into the actual design of the GUI. This allows the programmer to
focus more on what the GUI actually does rather than what it may look like.

Netbeans has two major components: a design component and a source component. The
design component allows the user to drag and drop the components he/she wants for the GUI
into place and name variables however they wish. Netbeans then sets up the class and variable
declarations based on that the user’s design of the GUI. The source component is where the
programmer can implement what the GUI actually does. For example: in the GUI I created for
the this project, there is only one button(for now). This button, when pressed, will take the text
that is typed into the three main text fields and store them in variables. It then checks to see if the
‘Cell Tracking’ check box is selected. If it is, the program takes the text in the ‘Cell Name’ text
box and stores it into another variable. The program then calls the appropriate python script
(which are explained above) based on the user’s choice. Lastly, the program executes a terminal
command that will run Vislt’s viewer window with the appropriate files, which will display to
the screen. This function allows the user to create a set of point3d files and display them without

having to open python or Vislt. It should be noted that the code that Netbeans generates for the

user cannot be edited from the source component of the Netbeans GUI.

[& ABMSimulationGULjava | Palette X |
Source| Design | History | @E B‘| &é&ﬂ_—“‘ﬂ_ﬂﬂ-ﬁ| 3 [/ Swing Containers
] Panel [Tabbed Pane
& Select the root node in Navigator to access various useful settings of the form (in Properties). % || split Pane [-H scroll Pane

[T Tool Bar 5 Desktop Pane
[Internal Frame Layered Pane

Browse Model.props File Location £l Swing Controls

Browse | Division Table File Location &=l Label 58] Button
(0] Toggle Button E- Check Box

[] cell Tracking

Cell Name (if tracking))

[Browse Output File Location

Visualize

- Radio Button £~ Button Group

[l=] Combo Box List

[Text Field Text Area

[JFrame] - Properties > |

| Properties | Binding Events Code
= Properties

defaultCloseOperation EXIT_ON_CLOSE = |..
title

[=|Other Properties
alwaysOnTop
alwaysOnTopSupported
autoRequestFocus
background

DRIRI

[240,240,240]

[JFrame]

[& ABMSImulationGULjava X |
50urce|Deswgn History ‘ ‘q,_'|'ﬂ%5'%;\|§>4}>‘:b| ‘O D|%EE
28 @SuppressWarnings (™ ked™)
29 Generated Code
158
159 [private void VisualizeButtonActionPerformed(java.awt.event.ActionEvent evt) {
160 '/ TOD 1 rou 1 g e here:
161 String propsloc ext ld.getText () ;
162 String outputloc = CutputTextField.getText ()
163 String divloc = DivIextField.getText():
164
165 String[] commander = new String[]{"C:/Python2
166 try {
167 Process p = Runtime.getRuntime () .exectcammande:[}:l
168 } catch (IOException e) {
169 H
170
173 if (CellTrackCheckBox.isSelected()=true)
172 {
173 String cellname = CellNameTextField.getText():
174 String[] commands = new String[]{"C:/P 27
A =] try {
176 Process p = Runtime.getRuntime () .exec (commands) ;
177 } catch (ICException e) {
178 H
179 }
180 else
<

vy", divloc, outputloc, cellname};

I am sure that this is not all that Netbeans is capable of, I am still learning to use the

software as well as coding in java. The GUI is incomplete as well. As of now, there is no

connection between the RepastHPC code and this interface, a problem I plan to remedy very

Soon.

Next Steps:

As I stated before, I plan to complete the GUI in order to create a user-friendly interface
to run this simulation. Also, I plan to reduce the complexity of my python scripts so there little to

no issues when larger data sets are run.

Resources

RepastHPC Tutorial and Download: http://repast.sourceforge.net/repast hpc.php

Visit Tutorial and Manuals: https://wci.llnl.gov/simulation/computer-codes/visit/manuals

Caenorhabditis Genetics Center, College of Biological Sciences, University of Minnesota.
“What is C. elegans?”. College of Biological Sciences, University of Minnesota. July 22, 2015.

https://www.cbs.umn.edu/research/resources/cgc/what-c-elegans

http://repast.sourceforge.net/repast_hpc.php
https://wci.llnl.gov/simulation/computer-codes/visit/manuals

Acknowledgements

Ben Ramsey (University of Tennessee)

Dali Wang (Oak Ridge National Laboratory)

Kwai Wong (University of Tennessee)

Scott Simmerman (Oak Ridge National Laboratory)
Zhirong Bao (Memorial Sloan Kettering Cancer Center)
John Murphy (Argonne National Laboratory)

Chung Ng (Morehouse College)

National Science Foundation

Joint Institute For Computational Sciences

Appendix
1) Python Script 4 Color:
import sys, os, shutil

def java(divloc, outputloc):
def ParseDivTable():
DivTable =[]
with open(divloc) as inDiv:
for line in inDiv:
data = line.split("" ")
parent = data[0]
parent = parent[1:]
daughter1 = data[1]
daughterl = daughter1[1:]
daughter2 = data[2]
daughter2 = daughter2[1:]
listofdata = [parent, daughterl, daughter2]
DivTable.append(listofdata)
DivTable = DivTable[1:]
return DivTable

def Find_Children(User_Cell, DivTable, Children):

search_cells =[]

search_cells.append(User_Cell)

Children.append(User Cell)

while search_cells !=[]:

search cell = search cells[0]

for cells in DivTable:

if search_cell == cells[0]:
search_cells.append(cells[1])
search_cells.append(cells[2])
Children.append(cells[1])
Children.append(cells[2])

search_cells.remove(search_cell)

def Highlight Cells(DivTable, blue, yellow, green, red):
rootdir = "./nuclei’

counter = 1

folder = outputloc

for files in os.walk(rootdir):

for nfiles in files:

if nfiles != rootdir and nfiles !=[]:
for file in nfiles:
sctr = str(counter)

with open(folder + 'data’ + sctr + '.3d', 'a") as infile:
infile.seek(0)
infile.truncate()
infile.write("x y z var\n")
with open(rootdir + /' + file) as fp:
for line in fp:
data = line.split(', ")
#cID = data[0]
valid = data[1]
#pID = data[2]
#nlID = data[3]
#dID = data[4]
xCOR = data[5]
yCOR = data[6]
zCOR = data[7]
#size = data[8]
name = data[9]
if " in name:
name = name[l:len(name) - 1]
if "Nuc" in name:
valid=0
if valid=="1":
if name in blue:
color=0
elif name in yellow:
color =75
elif name in green:
color =50
elif name in red:
color = 100
infile.write(xCOR +" ")
infile.write(yCOR +" ")
infile.write(zCOR + " ")
infile.write(str(color) + "\n")
counter = counter + 1
for letter in divloc:

if letter =="\"":

letter ="/"

for letter in outputloc:
if letter == "\"":

letter ="/"

DivTable = ParseDivTable()
Starting_Cells = ['P2', 'EMS', 'ABa', 'ABp']
blue =[]

yellow =[]

green = []

red =[]

Children =[]

Find_Children('P2', DivTable, Children)
blue = Children

Children =[]

Find_Children('"EMS', DivTable, Children)
yellow = Children

Children =[]

Find Children('ABa', DivTable, Children)
green = Children

Children =[]

Find Children('ABp', DivTable, Children)
red = Children

Highlight_Cells(DivTable, blue, yellow, green, red)

java(sys.argv[1], sys.argv[2])

Python Script: Cell Tracking:
import sys, os, shutil

def java(divloc, outputloc, User Cell):
def ParseDivTable():
DivTable =[]
with open(divloc) as inDiv:
for line in inDiv:
data = line.split("" ')
parent = data[0]
parent = parent[1:]
daughter1 = data[1]
daughter1 = daughter1[1:]
daughter2 = data[2]
daughter2 = daughter2[1:]
listofdata = [parent, daughterl, daughter2]
DivTable.append(listofdata)
DivTable = DivTable[1:]
return DivTable

def Find_Ancestors(User_Cell, DivTable, Ancestors):

found = False

search_cell = User_Cell

while search_cell !="ABp' and search_cell !="EMS' and search_cell !="P2' and search cell !=
'ABa':

found = False

for cells in DivTable:

if not found:
if search_cell == cells[1] or search_cell == cells[2]:
found = True
search_cell = cells[0]
Ancestors.append(search_cell)

def Find_Children(User_Cell, DivTable, Children):

search_cells =[]

search_cells.append(User_Cell)

while search_cells !=[]:

search_cell = search_cells[0]

for cells in DivTable:

if search_cell == cells[0]:
search_cells.append(cells[1])
search_cells.append(cells[2])
Children.append(cells[1])
Children.append(cells[2])

search_cells.remove(search_cell)

def Highlight Cells(User_Cell, Ancestors, Children):
rootdir ="./nuclei’

counter = 1

folder = outputloc

for files in os.walk(rootdir):
for nfiles in files:
if nfiles != rootdir and nfiles !=[]:
for file in nfiles:
sctr = str(counter)
with open(folder + 'data' + sctr + '.3d', 'a') as infile:
infile.seek(0)
infile.truncate()
infile.write("x y z var\n")
with open(rootdir + /' + file) as fp:
for line in fp:
data = line.split(', ")
#cID = data[0]
valid = data[1]
#plID = data[2]
#nlD = data[3]
#dID = data[4]
xCOR = data[5]
yCOR = data[6]
zCOR = data[7]
color_v = data[8]
name = data[9]
if """ in name:

name = name|[1:len(name) - 1]

if "Nuc" in name:

valid=0

if valid=="1":

if name in Ancestors:

color v=100

elif name == User_Cell:

color v=50

elif name in Children:

color v=150

else:

color v=20

infile.write(xCOR + " ")

infile.write(yCOR +" ")

infile.write(zCOR + " ")

infile.write(str(color_v) + "\n")
counter = counter + 1

for letter in divloc:

if letter =="\"":

letter ="/"

for letter in outputloc:
if letter == "\"":

letter ="/"

DivTable = ParseDivTable()

Ancestors = []

Children =[]

Find Ancestors(User Cell, DivTable, Ancestors)
Find_Children(User_Cell, DivTable, Children)
Highlight_Cells(User_Cell, Ancestors, Children)

java(sys.argv[1], sys.argv[2], sys.argv[3])

