
	
 1	

Power System Transient

Stability Simulation

Ashley Cliff

Mentors: Srdjan Simunovic, Aleksandar Dimitrovski, Kwai Wong

	
 2	

Overview
Electricity is an intrinsic part of modern culture, and having reliable access is a

necessity. Power supply systems, i.e. power grids, have the responsibility to produce and

distribute steady power to all consumers. Due to the nature of power, and of alternating

currents, slight disturbances can cause large amounts of fluctuation and damage quickly.

These can cause power outages that can range in severity from a single downed line to an

entire country or more without power.

The purpose of this project is to create accurate simulations of power outages that

can be used to avoid actual power failures. For the simulations to be useful, they must be

able to run faster than real time, to determine what will happen when there’s an outage

before the outcome occurs. To accomplish this, the Parareal in Time Algorithm is being

implemented to increase speed up and aid in a logical way to parallelize the code.

Steady State System
To simulate power outages, one must first be able to simulate and model a steady

state power system that has no issues. A simulation is accurate when the amount of power

generated is very closely matched to the amount of power used, and all voltages and

voltage angles are known. This starts with the physics of electricity, magnetism, and

circuits, and the design of power grids. An accurate representation of a power grid

includes all the lines, buses, transformers, generators, loads, and many other pieces. Each

line has an impedance (z) associated with it, where impedance is the total opposition to

the alternating current (Dictionary.com).

Admittances (y) are more commonly used in calculations, and are the inverses of

each impedance value. The admittances for each line are put into an admittance matrix

(Y) with the diagonal entries being all values flowing into a bus, and the rest being the

value between two buses, with unconnected buses having a value of zero.

	
 3	

A model of a two generator and four bus power system. [5]

The buses are broken up into three categories based on the given information for

each. Load buses, or PQ buses, have their real and imaginary power specified. Generator

buses, or PV buses, have their real power and their voltage magnitude specified. One bus,

the slack bus, has the voltage angle and voltage magnitude specified [4].

𝑌 =

𝑌!! 𝑌!"
𝑌!" 𝑌!!

𝑌!" 𝑌!"
𝑌!" 𝑌!"

𝑌!" 𝑌!!
𝑌!" 𝑌!"

𝑌!! 𝑌!"
𝑌!" 𝑌!!

𝑌 =

𝑦!! + 𝑦!" −𝑦!"
−𝑦!" 𝑦!" + 𝑦!"

−𝑦!" 0
−𝑦!" 0

−𝑦!" −𝑦!"
0 0

𝑦!" + 𝑦!" + 𝑦!" −𝑦!"
−𝑦!" 𝑦!"

Admittance Matrices for the two generator four bus system [5]

Due to the nature of alternating currents, the admittances are complex numbers,

with the real part being the conductance (g) and the imaginary part being the susceptance

(b). Because the admittances are complex, so too is the power.

	
 4	

The real and imaginary power is calculated as follows [4]:

𝑃!
!" = 𝑃! 𝜃,𝑉 = 𝑉! 𝑉!(𝐺!"

!

!!!

𝑐𝑜𝑠𝜃!" + 𝐵!"𝑠𝑖𝑛𝜃!")

𝑄!
!" = 𝑄! 𝜃,𝑉 = 𝑉! 𝑉!(𝐺!"

!

!!!

𝑠𝑖𝑛𝜃!" + 𝐵!"𝑐𝑜𝑠𝜃!")

Each PV bus will have a real power equation (P), and each PQ bus will have both

a real power equation (P) and an imaginary power equation (Q). These equations will be

used to solve for the voltage and voltage angles. The equations will be coupled because

the voltage at one bus is influenced by the voltage and power elsewhere.

Due to the coupling, the equations must be solved numerically rather than exactly.

The method used to solve this system of equations in Newton’s Method. Since the power

is known for all of the buses except the slack bus, those values are set against the

equations listed above, and the equations are solved iteratively until the two sides agree

or a certain margin of error is reached.

 Initial values for the states are the first things that need to be decided. It’s a

common practice to use a flat start, meaning that all of the buses have a voltage of one

per unit and a voltage angle of zero [5]. A method is then used to correct the values,

based on the amount of error, and a second iteration is run.

Dynamic System
The final solution values for the steady state functions are used as the initial state

values of the system for the dynamic problem. They represent the state of the power grid

before there is a fault. To accurately simulate the fault and ensuing changes to the system,

time dependent functions for many of the state variables are used, as well as a few

algebraic equations. The equations are as follows, where 𝑤! ,𝐻,𝐷,𝑇!!" ,𝑋! ,𝑋!! ,𝑇!"! ,

 𝑋! ,𝑋!! ,𝑇! ,𝑇!" ,𝑅! ,𝑇! ,𝐾! ,𝐴! , 𝑒(!!!!"),𝐾! ,𝑇! ,𝑇!" ,𝑅! ,𝐵!" , and 𝐺!" are constants [2].

	
 5	

Name	
 Equation	

MATLAB	

Function	

Stator	

Algebraic	

Equation	

𝑖!
𝑖!

=
1

(𝑅!! + 𝑋!𝑋!)

𝑅! 𝑋!
−𝑋! 𝑅!

𝐸! − 𝑉!
𝐸! − 𝑉!

	

	
 Eq_StatorAlgebraic22.m	

Network	

Algebraic	

Equations	

𝑌!"
!" =

𝐵!" 𝐺!"
𝐺!" −𝐵!"

; 𝑉!
!" =

𝑉!"
𝑉!"

; 𝐼!
!" =

𝐼!"
𝐼!"

;	

NWAlgebraic22.m	

Governor	

Model	

𝑑𝑃!"
𝑑𝑡 =

1
𝑇!"

 −𝑃!" + 𝑃! −
1
𝑅!
 𝑆! 	
 Eq_SteamGov.m	

Turbine	

Model	

𝑑𝑇!
𝑑𝑡 =

1
𝑇!"

 −𝑇! + 𝑃!" 	
 Eq_SteamTurb.m	

Change	
 in	
 q	
 -­‐	

axis	

Transient	

Voltage	

𝑑𝐸!!

𝑑𝑡 =
1
𝑇!"!

 −𝐸!! + 𝑋! − 𝑋!! 𝐼! + 𝐸!" 	

	
 Eq_ExcType1.m	

Change	
 in	
 d-­‐	

axis	

Transient	

Voltage	

𝑑𝐸!!

𝑑𝑡 =
1
𝑇!"!

 −𝐸!! − 𝑋! − 𝑋!! 𝐼! 	

	
 Eq_ExcType1.m	

Change	
 in	

Exciter	
 Field	

Voltage	

𝑑𝐸!"
𝑑𝑡 =

1
𝑇!
 − 𝐾! + 𝐴! 𝑒 !!!!" 𝐸!" + 𝑉! 	

	
 Eq_ExcType1.m	

Change	
 in	

Rotor	
 Angle	

𝑑𝛿
𝑑𝑡 =𝑊!𝑆!	

	
 Eq_Gen22.m	

Change	
 in	

Slip	

𝑑𝑆!
𝑑𝑡 =

1
2𝐻 −𝐷𝑆! + 𝑇! − 𝑇! 	

	
 Eq_Gen22.m	

Change	
 in	
 DC	

Voltage	

𝑑𝐸!"
𝑑𝑡 =

1
𝑇!
 −𝐸!" − 𝑋!! − 𝑋!! 𝐼! 	

	
 Eq_ExcType1.m	

	
 6	

The Runge-Kutta 4 Method

The Runge-Kutta 4 method is used to solve for the values of the state variables at each

time step. K1, K2, K3, and K4 are calculated for each of the MATLAB functions listed

above and h is the time step used in the calculations.

Visual Representation of how equations relate to the physical grid [2]

	
 7	

Parareal In Time Algorithm
To make the calculations easier to manage and faster to solve, they are broken up

into sections. Because of how interconnected the system is, it is not possible to use spatial

decomposition. Instead, a method known as the Parareal in Time Algorithm is used.

The Parareal in Time algorithm breaks the system up within the time domain,

rather than the physical domain [3]. The time axis is broken into sections, and the

calculations that would have been done along the entire axis are instead done on each

smaller section. The results for the small sections are then attached together in the order

designated by their location within the original axis.

Parallel Implementation of the Parareal Design for Dynamic Power Flow Analysis [3]

The biggest complication to overcome when using this algorithm is finding a

starting value for each section. To solve a differential equation, a function and a

beginning value are both needed, which is covered for the main axis by the values given

by the steady state system. The steady state system only gives values for time zero

though, and no initial values are known for all but the first small time section.

To get the starting values for each sub-section, a coarse approximation function is

used on the entire axis and the values at the beginning of each section are used as the

starting value. The approximation function, the trapezoidal rule, is not nearly as accurate

as the RK4 function, so the values calculated based on those starting values will not be as

close to the correct values as the RK4 method would be, but will be good enough to use

	
 8	

as a starting point. Once a fine solve iteration has run, the coarse value is corrected, the

coarse method is reran with a more accurate value and the system runs again. This

iterative method is used until the value is within a specified margin of error, or the

maximum number of iterations is reached.

To make this process run faster than simply solving each time step one after the

other, the calculations for each of the sub-intervals are done in parallel. When the number

of sub-intervals is large, doing the calculations in parallel can provide a significant speed

up. The speed up is offset by the time it takes for the coarse solver and coarse corrector to

run, which a simple serial calculation would not have.

3 Generator 9 Bus System

Power model of a three generator and nine bus system with power amounts, impedance

values, and admittance values [2]

	
 9	

 The starting values for the 3 generator 9 bus system are as shown in the above

diagram. The steady state system is solved using MatPower (matpower5.1) [7], a module

added into the MATLAB code framework. Results in Appendix A. All results have been

found using this system.

Results
To test the parallel capabilities of MATLAB, two random nxn matrices were

generated and multiplied together within a for loop, as well as within a parfor loop, which

does the calculations in parallel rather than sequentially. The time was measured for

different matrix sizes as well as the number of iterations. The results of some of the tests

are in the following table.

Matrix	
 Size	

Number	
 of	

Iterations	

Serial	

Time	
 Parallel	
 Time	

10,000	
 32	
 84.986s	
 119.811s	

10,000	
 64	
 267.242s	
 232.232s	

5,000	
 1024	
 401s	
 314s	

5,000	
 512	
 236s	
 262s	

The table shows that once the number of iterations is large, or the matrix size is large and

the number of iterations is relatively large, the time for the parallel code to run is shorter

than the time for the serial code to run. This leads to the conclusion that MATLAB has a

high time cost for setting up parallel computations. This makes using the parfor loop

useful only for large systems where the setup cost will be minor compared to the time

that the loop will run.

 For the three generator and nine bus system, the section of code that iterates over

the coarse sections to solve the RK4 function uses a regular for loop for the serial code,

the fnParaReal22.m file. Psuedocode is displayed in the box below. To implement the

Parareal in Time Algorithm correctly, the for loop was replaced with a parfor loop, and

many of the data structures were rearranged to meet the requirements for running in

parallel (done by Aleksandar Dimitrovski).

	
 10	

Psuedocode of the fnParaReal22.m loop

The parallel code was run on thirty-two workers on the nanoheat1 machine from

the University of Tennessee. The theoretical speed up was calculated based on the speed

up algorithm in “Parareal in Time for Fast Power System Dynamic Simulations” [3],

which is N/k where N is the number of intervals and k is the number of iterations for all

intervals.

 The theoretical speed up was calculated to be approximately 5.33 for the

Fige3g9b_C1_BusF_1_6c file, which used six iterations. This case was chosen because it

required the most iterations to converge, and would give a “worst case scenario” for the

theoretical speed up. The value used for N was 32, because there were only 32 workers

and the code could not run more than 32 intervals at a time regardless of the fact that the

time interval was actually broken into 450 segments.

The time for the serial loop to complete took 5.423 seconds. The time for the

parallel loop to complete took 1.151 seconds. Tables for both the serial and parallel loop

times are located in appendix B. The measured speed up was then calculated by dividing

the serial loop time by the parallel loop time. This came out to be approximately 4.7.

Conclusion and Future Work
 Based on the results above, we were able to conclude that the Parareal in Time

algorithm within MATLAB will give a speed increase to running the simulation. The

next steps will be to calculate speed ups for more the of the fault cases for the three

For each coarse section (in parallel):

 Runge-Kutta 4 Function Calls - fine evaluation

 Correct coarse evaluation

 Add one to iteration count
	

Trapezoid Function Call – Initial coarse evaluation

While iterations less than max number of iterations:
	

	
 11	

generator and nine bus system and then run the simulation for large systems and see how

the speed up scales with the system. Once it has been determined that the speed up is

consistent across multiple systems, C, C++, or Fortran code should be written from

scratch. The new code would be more flexible with parallel implementation and code

optimization.

	
 12	

Appendix A
[7]

MATPOWER Version 5.1, 20-Mar-2015 -- AC Power Flow (Newton)
Newton's method power flow converged in 4 iterations.
Converged in 0.13 seconds

System	
 Summary	

	
 	
 	
 	
 How	
 Many?	
 How	
 Much?	
 P	
 (MW)	
 Q	
 (Mvar)	

Buses 10	
 Total Gen Capacity 820.0	

-­‐900.00	
 to	

900.00	

Generators 3	
 On-line Capacity 820.0	

-­‐900.00	
 to	

900.00	

Committed Gens 3	
 Generation (actual) 319.6	
 22.8	

Loads 3	
 Load 315.0	
 115.0	

 Fixed 3	
 Fixed 315.0	
 115.0	

 Dispatchable 0	
 Dispatchable 	
 -­‐0.0	
 of	
 -­‐0.0	
 -­‐0.0	

Shunts 0	
 Shunt (inj) -­‐0.0	
 0.0	

Branches 11	
 Losses (I^2 * Z) 4.64	
 48.38	

Transformers 0	
 Branch Charging (inj) -­‐	
 140.5	

Inter-ties 0	
 Total Inter-tie Flow 0.0	
 0.0	

Areas 1	

	
 	
 	

	

Minimum	
 Maximum	

Voltage	

Magnitude	
 0.996	
 p.u.	
 @	
 bus	
 5	
 1.040	
 p.u.	
 @	
 bus	
 1	

Voltage	
 Angle	
 -­‐3.99	
 deg	
 @	
 bus	
 5	
 9.28	
 deg	
 @	
 bus	
 2	

P	
 Losses	
 (I^2*R)	
 -­‐	
 2.30	
 MW	
 @	
 line	
 5-­‐7	

Q	
 Losses	
 (I^2*X)	
 -­‐	
 15.83	
 Mvar	
 @	
 line	
 2-­‐7	

Bus	
 Data	

	
 	
 	
 	
 	
 	

	

Voltage	
 Generation	
 Load	

Bus	
 #	
 Mag	
 (pu)	
 Ang	
 (deg)	
 P	
 (MW)	
 Q	
 (MVAr)	
 P	
 (MW)	
 Q	
 (MVAr)	

1	
 1.040	
 0.000	
 71.64	
 27.05	
 -­‐	
 -­‐	

2	
 1.025	
 9.280	
 163.00	
 6.65	
 -­‐	
 -­‐	

3	
 1.025	
 4.665	
 85.00	
 -­‐10.86	
 -­‐	
 -­‐	

4	
 1.026	
 -­‐2.217	
 -­‐	
 -­‐	
 -­‐	
 -­‐	

5	
 0.996	
 -­‐3.989	
 -­‐	
 -­‐	
 125.00	
 50.00	

6	
 1.013	
 -­‐3.687	
 -­‐	
 -­‐	
 90.00	
 30.00	

7	
 1.026	
 3.720	
 -­‐	
 -­‐	
 -­‐	
 -­‐	

8	
 1.016	
 0.728	
 -­‐	
 -­‐	
 100.00	
 35.00	

9	
 1.032	
 1.967	
 -­‐	
 -­‐	
 -­‐	
 -­‐	

10	
 1.024	
 6.499	
 -­‐	
 -­‐	
 -­‐	
 -­‐	

	
 13	

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	

	
 	

Total:	
 319.64	
 22.84	
 315.00	
 115.00	

Branch	
 Data	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	

From	
 Bus	
 	
 Injection	
 	
 To	
 Bus	
 	
 Injection	
 	
 Loss	
 (I^2	
 *	
 Z)	

Branch	
 #	

From	

Bus	
 To	
 Bus	
 P	
 (MW)	
 Q	
 (MVAr)	
 P	
 (MW)	
 Q	
 (MVAr)	
 P	
 (MW)	

Q	

(MVAr)	

1	
 1	
 4	
 71.64 27.05 -71.64 -23.92 0.000 3.12
2	
 4	
 6	
 30.7 1.03 -30.54 -16.54 0.166 0.90
3	
 6	
 9	
 -59.46 -13.46 60.82 -18.07 1.354 5.90
4	
 3	
 9	
 85 -10.86 -85.00 14.96 0.000 4.10
5	
 8	
 9	
 -24.1 -24.30 24.18 3.12 0.088 0.75
6	
 7	
 8	
 76.38 -0.8 -75.90 -10.70 0.475 4.03
7	
 2	
 7	
 163 6.65 -163.00 9.18 0.000 15.83
8	
 5	
 7	
 -84.32 -11.31 86.62 -8.38 2.300 11.57
9	
 4	
 5	
 40.94 22.89 -40.68 -38.69 0.258 2.19
10	
 10	
 2	
 -0.00 0.00 0.00 -0.00 0.000 0.00
11	
 10	
 7	
 0.00 -0.00 -0.00 0.00 0.000 0.00

	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	

	
 	
 	
 	
 	
 	

Total:	
 4.641	
 48.38	

Vg0bar =
 1.0400 + 0.0000i
 1.0116 + 0.1653i
 1.0216 + 0.0834i

	
 14	

Appendix B

0.317865	

0.173421	

0.155791	

0.157043	

0.154127	

0.193035	

Parallel Loop Times

0.96587	

0.943508	

0.907619	

0.891114	

0.866328	

0.848641	

Serial Loop Times

	
 15	

Sources
[1] Dictionary.com. Dictionary.com. Web. 6 Aug. 2015.

[2] Gurrala, Gurunath. "Power System Parallel Dynamic Simulation Framework for Real

 Time Wide-Area Protection and Control."

[3] Gurrala, Gurunath, Aleksandar Dimitrovski, Pannala Sreekanth, Srdjan Simunovic,

 and Michael Starke. "Parareal in Time for Fast Power System Dynamic Simulations."

[4] Idema, Reijer, and Domenico Lahaye. Computational Methods in Power System

 Analysis. Delft: Atlantis, 2014. Print.

[5] McCalley, James. The Power Flow Problem. Ames. Print.

[6] Meier, Alexandra Von. Electric Power Systems A Conceptual Introduction. Hoboken,

 N.J.: IEEE :, 2006. Print.

[7] Zimmerman, Ray D., and Carlos E. Murillo-Sanchez. MatPower. Computer software.

 MatPower. Vers. 5.1. N.p., 20 Apr. 2015. Web.

 <http://www.pserc.cornell.edu//matpower/>.

