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Overview 
Electricity is an intrinsic part of modern culture, and having reliable access is a 

necessity. Power supply systems, i.e. power grids, have the responsibility to produce and 

distribute steady power to all consumers. Due to the nature of power, and of alternating 

currents, slight disturbances can cause large amounts of fluctuation and damage quickly.  

These can cause power outages that can range in severity from a single downed line to an 

entire country or more without power. 

The purpose of this project is to create accurate simulations of power outages that 

can be used to avoid actual power failures. For the simulations to be useful, they must be 

able to run faster than real time, to determine what will happen when there’s an outage 

before the outcome occurs. To accomplish this, the Parareal in Time Algorithm is being 

implemented to increase speed up and aid in a logical way to parallelize the code. 

 

Steady State System 
To simulate power outages, one must first be able to simulate and model a steady 

state power system that has no issues. A simulation is accurate when the amount of power 

generated is very closely matched to the amount of power used, and all voltages and 

voltage angles are known. This starts with the physics of electricity, magnetism, and 

circuits, and the design of power grids. An accurate representation of a power grid 

includes all the lines, buses, transformers, generators, loads, and many other pieces. Each 

line has an impedance (z) associated with it, where impedance is the total opposition to 

the alternating current (Dictionary.com).  

Admittances  (y) are more commonly used in calculations, and are the inverses of 

each impedance value. The admittances for each line are put into an admittance matrix 

(Y) with the diagonal entries being all values flowing into a bus, and the rest being the 

value between two buses, with unconnected buses having a value of zero.  
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A model of a two generator and four bus power system. [5] 

 

The buses are broken up into three categories based on the given information for 

each. Load buses, or PQ buses, have their real and imaginary power specified. Generator 

buses, or PV buses, have their real power and their voltage magnitude specified. One bus, 

the slack bus, has the voltage angle and voltage magnitude specified [4]. 
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Admittance Matrices for the two generator four bus system [5] 

 

Due to the nature of alternating currents, the admittances are complex numbers, 

with the real part being the conductance (g) and the imaginary part being the susceptance 

(b). Because the admittances are complex, so too is the power.  
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The real and imaginary power is calculated as follows [4]:  

𝑃!
!" =   𝑃! 𝜃,𝑉 =   𝑉! 𝑉!(𝐺!"

!

!!!

𝑐𝑜𝑠𝜃!" +   𝐵!"𝑠𝑖𝑛𝜃!") 

𝑄!
!" =   𝑄! 𝜃,𝑉 =   𝑉! 𝑉!(𝐺!"

!

!!!

𝑠𝑖𝑛𝜃!" +   𝐵!"𝑐𝑜𝑠𝜃!") 

 

Each PV bus will have a real power equation (P), and each PQ bus will have both 

a real power equation (P) and an imaginary power equation (Q). These equations will be 

used to solve for the voltage and voltage angles. The equations will be coupled because 

the voltage at one bus is influenced by the voltage and power elsewhere.  

Due to the coupling, the equations must be solved numerically rather than exactly. 

The method used to solve this system of equations in Newton’s Method. Since the power 

is known for all of the buses except the slack bus, those values are set against the 

equations listed above, and the equations are solved iteratively until the two sides agree 

or a certain margin of error is reached. 

 Initial values for the states are the first things that need to be decided. It’s a 

common practice to use a flat start, meaning that all of the buses have a voltage of one 

per unit and a voltage angle of zero [5]. A method is then used to correct the values, 

based on the amount of error, and a second iteration is run. 

 

Dynamic System 
The final solution values for the steady state functions are used as the initial state 

values of the system for the dynamic problem. They represent the state of the power grid 

before there is a fault. To accurately simulate the fault and ensuing changes to the system, 

time dependent functions for many of the state variables are used, as well as a few 

algebraic equations. The equations are as follows, where 𝑤! ,𝐻,𝐷,𝑇!!" ,𝑋! ,𝑋!! ,𝑇!"! , 

  𝑋! ,𝑋!! ,𝑇! ,𝑇!" ,𝑅! ,𝑇! ,𝐾! ,𝐴! , 𝑒(!!!!"),𝐾! ,𝑇! ,𝑇!" ,𝑅! ,𝐵!" , and  𝐺!"    are constants [2]. 
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Name	
   Equation	
  
MATLAB	
  
Function	
  

Stator	
  
Algebraic	
  
Equation	
  

𝑖!
𝑖!

=   
1

(𝑅!! +   𝑋!𝑋!)
  
𝑅! 𝑋!
−𝑋! 𝑅!

  
𝐸! −   𝑉!
𝐸! −   𝑉!

	
  

	
   Eq_StatorAlgebraic22.m	
  

Network	
  
Algebraic	
  
Equations	
  

𝑌!"
!" =   

𝐵!" 𝐺!"
𝐺!" −𝐵!"

;   𝑉!
!" =

𝑉!"
𝑉!"

;   𝐼!
!" =

𝐼!"
𝐼!"

;	
  
NWAlgebraic22.m	
  

Governor	
  
Model	
  

𝑑𝑃!"
𝑑𝑡 =   

1
𝑇!"

   −𝑃!" +   𝑃! −   
1
𝑅!
  𝑆! 	
   Eq_SteamGov.m	
  

Turbine	
  
Model	
  

𝑑𝑇!
𝑑𝑡 =   

1
𝑇!"

   −𝑇! +   𝑃!" 	
   Eq_SteamTurb.m	
  
Change	
  in	
  q	
  -­‐	
  
axis	
  
Transient	
  
Voltage	
  

𝑑𝐸!!

𝑑𝑡 =   
1
𝑇!"!

   −𝐸!! + 𝑋! −   𝑋!! 𝐼! +   𝐸!" 	
  

	
   Eq_ExcType1.m	
  
Change	
  in	
  d-­‐	
  
axis	
  
Transient	
  
Voltage	
  

𝑑𝐸!!

𝑑𝑡 =   
1
𝑇!"!

   −𝐸!! − 𝑋! −   𝑋!! 𝐼! 	
  

	
   Eq_ExcType1.m	
  
Change	
  in	
  
Exciter	
  Field	
  
Voltage	
  

𝑑𝐸!"
𝑑𝑡 =   

1
𝑇!
   − 𝐾! +   𝐴!    𝑒 !!!!" 𝐸!" +   𝑉! 	
  

	
   Eq_ExcType1.m	
  

Change	
  in	
  
Rotor	
  Angle	
  

𝑑𝛿
𝑑𝑡 =𝑊!𝑆!	
  

	
   Eq_Gen22.m	
  

Change	
  in	
  
Slip	
  

𝑑𝑆!
𝑑𝑡 =   

1
2𝐻 −𝐷𝑆! +   𝑇! −   𝑇! 	
  

	
   Eq_Gen22.m	
  

Change	
  in	
  DC	
  
Voltage	
  

𝑑𝐸!"
𝑑𝑡 =   

1
𝑇!
   −𝐸!" − 𝑋!! −   𝑋!! 𝐼! 	
  

	
   Eq_ExcType1.m	
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The Runge-Kutta 4 Method 

 

The Runge-Kutta 4 method is used to solve for the values of the state variables at each 

time step. K1, K2, K3, and K4 are calculated for each of the MATLAB functions listed 

above and h is the time step used in the calculations. 

 

 
Visual Representation of how equations relate to the physical grid [2] 
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Parareal In Time Algorithm 
To make the calculations easier to manage and faster to solve, they are broken up 

into sections. Because of how interconnected the system is, it is not possible to use spatial 

decomposition. Instead, a method known as the Parareal in Time Algorithm is used.  

The Parareal in Time algorithm breaks the system up within the time domain, 

rather than the physical domain [3]. The time axis is broken into sections, and the 

calculations that would have been done along the entire axis are instead done on each 

smaller section. The results for the small sections are then attached together in the order 

designated by their location within the original axis. 

 
Parallel Implementation of the Parareal Design for Dynamic Power Flow Analysis [3] 

 

The biggest complication to overcome when using this algorithm is finding a 

starting value for each section. To solve a differential equation, a function and a 

beginning value are both needed, which is covered for the main axis by the values given 

by the steady state system. The steady state system only gives values for time zero 

though, and no initial values are known for all but the first small time section. 

To get the starting values for each sub-section, a coarse approximation function is 

used on the entire axis and the values at the beginning of each section are used as the 

starting value. The approximation function, the trapezoidal rule, is not nearly as accurate 

as the RK4 function, so the values calculated based on those starting values will not be as 

close to the correct values as the RK4 method would be, but will be good enough to use 



	
   8	
  

as a starting point. Once a fine solve iteration has run, the coarse value is corrected, the 

coarse method is reran with a more accurate value and the system runs again. This 

iterative method is used until the value is within a specified margin of error, or the 

maximum number of iterations is reached.  

To make this process run faster than simply solving each time step one after the 

other, the calculations for each of the sub-intervals are done in parallel. When the number 

of sub-intervals is large, doing the calculations in parallel can provide a significant speed 

up. The speed up is offset by the time it takes for the coarse solver and coarse corrector to 

run, which a simple serial calculation would not have.  

 

3 Generator 9 Bus System  

 
Power model of a three generator and nine bus system with power amounts, impedance 

values, and admittance values [2] 
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 The starting values for the 3 generator 9 bus system are as shown in the above 

diagram. The steady state system is solved using MatPower (matpower5.1) [7], a module 

added into the MATLAB code framework. Results in Appendix A. All results have been 

found using this system. 

 

Results 
To test the parallel capabilities of MATLAB, two random nxn matrices were 

generated and multiplied together within a for loop, as well as within a parfor loop, which 

does the calculations in parallel rather than sequentially. The time was measured for 

different matrix sizes as well as the number of iterations. The results of some of the tests 

are in the following table. 

 

Matrix	
  Size	
  
Number	
  of	
  
Iterations	
  

Serial	
  
Time	
   Parallel	
  Time	
  

10,000	
   32	
   84.986s	
   119.811s	
  
10,000	
   64	
   267.242s	
   232.232s	
  
5,000	
   1024	
   401s	
   314s	
  
5,000	
   512	
   236s	
   262s	
  

 
The table shows that once the number of iterations is large, or the matrix size is large and 

the number of iterations is relatively large, the time for the parallel code to run is shorter 

than the time for the serial code to run. This leads to the conclusion that MATLAB has a 

high time cost for setting up parallel computations. This makes using the parfor loop 

useful only for large systems where the setup cost will be minor compared to the time 

that the loop will run. 

 For the three generator and nine bus system, the section of code that iterates over 

the coarse sections to solve the RK4 function uses a regular for loop for the serial code, 

the fnParaReal22.m file. Psuedocode is displayed in the box below. To implement the 

Parareal in Time Algorithm correctly, the for loop was replaced with a parfor loop, and 

many of the data structures were rearranged to meet the requirements for running in 

parallel (done by Aleksandar Dimitrovski).  
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Psuedocode of the fnParaReal22.m loop 

 

The parallel code was run on thirty-two workers on the nanoheat1 machine from 

the University of Tennessee. The theoretical speed up was calculated based on the speed 

up algorithm in “Parareal in Time for Fast Power System Dynamic Simulations” [3], 

which is N/k where N is the number of intervals and k is the number of iterations for all 

intervals. 

 The theoretical speed up was calculated to be approximately 5.33 for the 

Fige3g9b_C1_BusF_1_6c file, which used six iterations. This case was chosen because it 

required the most iterations to converge, and would give a “worst case scenario” for the 

theoretical speed up. The value used for N was 32, because there were only 32 workers 

and the code could not run more than 32 intervals at a time regardless of the fact that the 

time interval was actually broken into 450 segments.  

The time for the serial loop to complete took 5.423 seconds. The time for the 

parallel loop to complete took 1.151 seconds. Tables for both the serial and parallel loop 

times are located in appendix B. The measured speed up was then calculated by dividing 

the serial loop time by the parallel loop time. This came out to be approximately 4.7. 

   

Conclusion and Future Work 
 Based on the results above, we were able to conclude that the Parareal in Time 

algorithm within MATLAB will give a speed increase to running the simulation. The 

next steps will be to calculate speed ups for more the of the fault cases for the three 

For each coarse section (in parallel): 

            Runge-Kutta 4 Function Calls  - fine evaluation 

         Correct coarse evaluation 

           Add one to iteration count 
	
  

Trapezoid Function Call – Initial coarse evaluation 

While iterations less than max number of iterations: 
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generator and nine bus system and then run the simulation for large systems and see how 

the speed up scales with the system. Once it has been determined that the speed up is 

consistent across multiple systems, C, C++, or Fortran code should be written from 

scratch. The new code would be more flexible with parallel implementation and code 

optimization. 
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Appendix A 
[7] 

MATPOWER Version 5.1, 20-Mar-2015 -- AC Power Flow (Newton) 
Newton's method power flow converged in 4 iterations. 
Converged in 0.13 seconds 
 
System	
  Summary	
  

	
   	
   	
   	
  How	
  Many?	
   How	
  Much?	
   P	
  (MW)	
   Q	
  (Mvar)	
  

Buses 10	
   Total Gen Capacity 820.0	
  
-­‐900.00	
  to	
  
900.00	
  

Generators 3	
   On-line Capacity 820.0	
  
-­‐900.00	
  to	
  
900.00	
  

Committed Gens 3	
   Generation (actual) 319.6	
   22.8	
  
Loads  3	
   Load   315.0	
   115.0	
  
         Fixed  3	
   Fixed    315.0	
   115.0	
  
         Dispatchable 0	
   Dispatchable  	
  -­‐0.0	
  of	
  -­‐0.0	
   -­‐0.0	
  
Shunts 0	
   Shunt (inj) -­‐0.0	
   0.0	
  
Branches 11	
   Losses (I^2 * Z) 4.64	
   48.38	
  
Transformers 0	
   Branch Charging (inj) -­‐	
   140.5	
  
Inter-ties 0	
   Total Inter-tie Flow 0.0	
   0.0	
  
Areas 1	
  

	
   	
   	
   

	
  
Minimum	
   Maximum	
  

Voltage	
  
Magnitude	
   0.996	
  p.u.	
  @	
  bus	
  5	
   1.040	
  p.u.	
  @	
  bus	
  1	
  
Voltage	
  Angle	
   -­‐3.99	
  deg	
  @	
  bus	
  5	
   9.28	
  deg	
  @	
  bus	
  2	
  
P	
  Losses	
  (I^2*R)	
   -­‐	
   2.30	
  MW	
  @	
  line	
  5-­‐7	
  
Q	
  Losses	
  (I^2*X)	
   -­‐	
   15.83	
  Mvar	
  @	
  line	
  2-­‐7	
  

 
Bus	
  Data	
  

	
   	
   	
   	
   	
   	
  
	
  

Voltage	
   Generation	
   Load	
  
Bus	
  #	
   Mag	
  (pu)	
   Ang	
  (deg)	
   P	
  (MW)	
   Q	
  (MVAr)	
   P	
  (MW)	
   Q	
  (MVAr)	
  
1	
   1.040	
   0.000	
   71.64	
   27.05	
   -­‐	
   -­‐	
  
2	
   1.025	
   9.280	
   163.00	
   6.65	
   -­‐	
   -­‐	
  
3	
   1.025	
   4.665	
   85.00	
   -­‐10.86	
   -­‐	
   -­‐	
  
4	
   1.026	
   -­‐2.217	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
5	
   0.996	
   -­‐3.989	
   -­‐	
   -­‐	
   125.00	
   50.00	
  
6	
   1.013	
   -­‐3.687	
   -­‐	
   -­‐	
   90.00	
   30.00	
  
7	
   1.026	
   3.720	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
8	
   1.016	
   0.728	
   -­‐	
   -­‐	
   100.00	
   35.00	
  
9	
   1.032	
   1.967	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
10	
   1.024	
   6.499	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
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Total:	
   319.64	
   22.84	
   315.00	
   115.00	
  

 
Branch	
  Data	
  

	
   	
   	
   	
   	
   	
   	
   	
  
	
   	
   	
  

From	
  Bus	
  	
   Injection	
  	
   To	
  Bus	
  	
   Injection	
  	
   Loss	
  (I^2	
  *	
  Z)	
  

Branch	
  #	
  
From	
  
Bus	
   To	
  Bus	
   P	
  (MW)	
   Q	
  (MVAr)	
   P	
  (MW)	
   Q	
  (MVAr)	
   P	
  (MW)	
  

Q	
  
(MVAr)	
  

1	
   1	
   4	
   71.64 27.05 -71.64 -23.92 0.000 3.12 
2	
   4	
   6	
   30.7 1.03 -30.54 -16.54 0.166 0.90 
3	
   6	
   9	
   -59.46 -13.46 60.82 -18.07 1.354 5.90 
4	
   3	
   9	
   85 -10.86 -85.00 14.96 0.000 4.10 
5	
   8	
   9	
   -24.1 -24.30 24.18 3.12 0.088 0.75 
6	
   7	
   8	
   76.38 -0.8 -75.90 -10.70 0.475 4.03 
7	
   2	
   7	
   163 6.65 -163.00 9.18 0.000 15.83 
8	
   5	
   7	
   -84.32 -11.31 86.62 -8.38 2.300 11.57 
9	
   4	
   5	
   40.94 22.89 -40.68 -38.69 0.258 2.19 
10	
   10	
   2	
   -0.00 0.00 0.00 -0.00 0.000 0.00 
11	
   10	
   7	
   0.00 -0.00 -0.00 0.00 0.000 0.00 

	
   	
   	
   	
   	
   	
   	
  
	
  	
   	
  	
  

	
   	
   	
   	
   	
   	
  
Total:	
   4.641	
   48.38	
  

 
Vg0bar = 
   1.0400 + 0.0000i 
   1.0116 + 0.1653i 
   1.0216 + 0.0834i 
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Appendix B 
 

0.317865	
  
0.173421	
  
0.155791	
  
0.157043	
  
0.154127	
  
0.193035	
  

 

Parallel Loop Times 

 

0.96587	
  
0.943508	
  
0.907619	
  
0.891114	
  
0.866328	
  
0.848641	
  

 

Serial Loop Times 
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