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Steady State System

The purpose of this project is to create accurate simulations 
of power outages that can be used to shorten the duration 
and number of occurrences of power failures. For the 
simulations to be useful, they must be able to run faster than 
real time, to determine what will happen when there’s an 
outage before the outcome occurs. An innovative way to 
achieve that  speed up is with the Parareal Algorithm.

• Basis for Dynamic Systems
• Determine voltage  and voltage angles
• Match real power and imaginary power generation to 

consumption
• Solved  using Newton’s  Method
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Coupled non-linear algebraic equations

3 Generator, 9 Bus System

The Parareal in Time Algorithm divides the time domain into 
intervals, and integrates concurrently over each interval.

Once a fault has tripped, the final solution for the steady state 
system is used as the initial values for the dynamic system 
problem. The goal is to accurately simulate how the fault 
propagates through the system as time goes on.

The RK4  method is then used to determine the state values for the 
next iteration. This process is repeated until the error is within a 
designated  margin or the max number of iterations is reached. 

Using Parareal: Time  sections can run at the same time, with a 
coarse approximation used to generate initial values for each 
iteration

Thanks to  NSF, University of Tennessee Knoxville, JICS, 
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Trapezoid Function Call – Initial coarse evaluation
While iterations less than max number of iterations:

For each coarse section (in parallel):
Runge-Kutta 4 Function Calls  - fine evaluation

Correct coarse evaluation
Add one to iteration count

MATLAB Pseudocode

Results

Admittance Matrix

The MatPower program 
takes an admittance 
matrix created from a bus 
diagram as input and 
solves the power 
equations for the state 
variables.
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Governor Model
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Turbine Model
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Change in q - axis 
Transient Voltage
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Change in d- axis 
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Change in Rotor 
Angle
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Change in Slip
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Based on the analysis of the fine solve loop for multiple fault cases for the 3 
generator 9 bus system with 32 workers. 

Theoretical Speed up – number of sections (or number of workers) divided 
by the number of iterations
Actual Speed up – total time for serial loop to run divided by total time for 
parallel loop to run

Theoretical Speed Up: 32 workers/6  iterations = 5.3
Actual Speed up:  5.423s/1.151s = 4.71

Conceptually, parallelizing the loop does create a speed up. In the future, to 
increase the  speed up for the  entire program, it will be written  in C or 
C++, which can be optimized better. MATLAB has a high set up cost (in time) 
to run in parallel.

Fine solve loop


