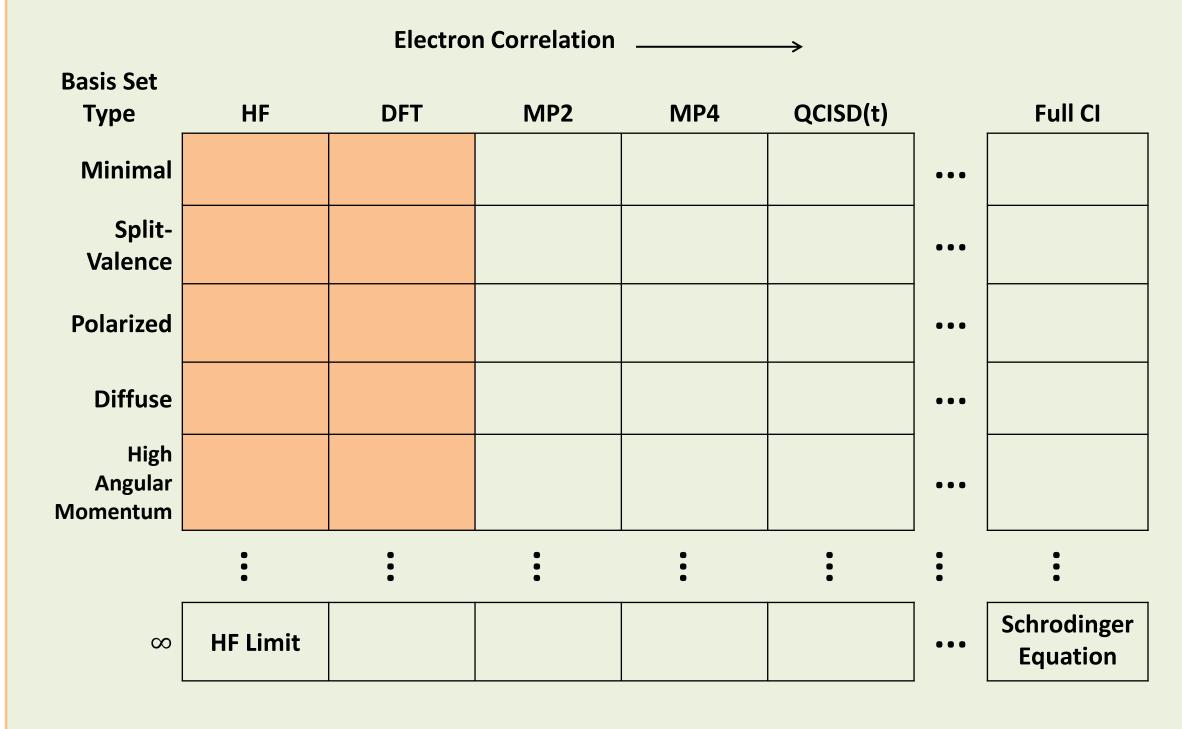


Overview

Understanding accuracy and predictive capabilities of theoretical models in simulation of absorption spectra is important for design of new light-absorbing devices such as solar cells. DFT based approaches allow for inexpensive simulation of absorption but the accuracy strongly depends on the basis set and functional used. A combined electronic structure and highthroughput tools, such as swift, allow for systematic studies of basis set effect in popular DFT functionals for various molecules. ^{1,2}

NWChem³

• Ab initio chemistry software package


- Designed for high-performance super computers as well as conventional clusters.
- *Capabilities:* Molecular dynamics, Molecular Mechanics, HF (SCF), DFT, TD-DFT, P-HF, QM/MM, ONIOM

Absorbance Spectra				
	Energy	Erector Harris H		
stopod ************************************	0	Selective absorption of light		
	0	corresponds to the energy difference between the ground and excited states		

Effect of Basis Sets on Absorbance Spectra

Sarah Zinn, Selina Arrington-Boyd, Shi-Quan Su, Jacek Jakowski University of Tennessee, Knoxville

Basis Sets

TD-DFT⁴

A Quantum mechanical method used to study properties ar external, time-dependent pert

Real-Time (RT) TD-DFT: time domain 0

Linear Response (LR) TD-DFT: frequency domain; rea

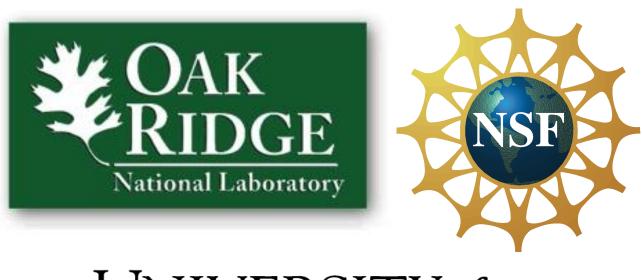
Casida Equation (Random Phase Approximation)

$$\begin{pmatrix} -A & -B \\ B & A \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = i\hbar a$$

Tamm-Dancoff Approximation (some elements)

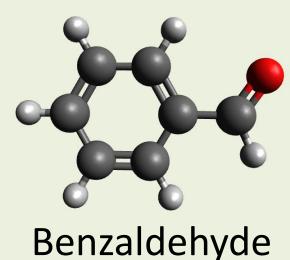
Direct approach: Solve TD Schrödinger equation of the $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = (H+V)|\Psi$

			Our work
		Calculated Excited State	 Calcul (alway)
Actual Absorbance Energy	Calculated Absorbance Energy	 Excite than g 	
	Actual Excited State	 Absor in ene 	
	– – – Calculated Ground State Actual Ground State	 Goal: basis of abs 	

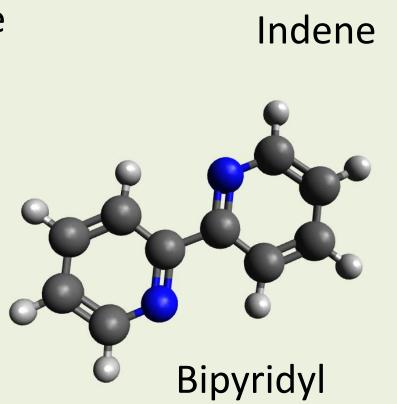

Our Work

 A set of functions combined in linear combinations to create molecular orbitals The larger and more complex a basis set is, the better the approximation of energy. Balance computational cost with accuracy 	Furan Furan Greater of the second sec
and dynamics of many-body systems in turbations.	 Next Step: Calculat absorbance values molecular moveme
val-time (RT) TD-DFT with LR TD-DFT n), RPA $\omega \begin{pmatrix} x' \\ y' \end{pmatrix}$ s in B dropped) many-electron wave function $\Psi(t)$	Compu Ge Future Abs M TD Basi DFT:
lated state energies are bound ys higher) ed state energies converge faster ground state energies	 [1] Jacquemin, D.; Perpete, E. <i>Theory Comput.</i> 2008. 4, 1 [2] Jacquemin, D.; Wathelet, <i>Comput.</i> 2009. 5, 2420-24 [3] M. Valiev, E.J. Bylaska, N Dam, D. Wang, J. Nieploo Phys. Commun. 181, 1477 [4] Eberhard, K.; Gross, U.; N

- rbance energies are the differences ergies.
- To determine how complete of a set is necessary to see convergence sorbance energies.


New York, 2012.

Shi-Quan Su: ssu2@utk.edu Jacek Jakowski: jakowskij@ornl.gov Sarah Zinn: s-zinn@onu.edu Selina Arrington-Boyd: sarrin11@eagles.nccu.edu



THEUNIVERSITY KNOXVILLE

Progress

ovement of ms until energy ionary point

culating lues from vements.

Chlorobenzophenone

mputational Parameters

Geometry Optimization

Qchem 4.1 DFT/B3LYP Basis: LANL2DZ

Absorbance Spectra Calculations

Machine: NICS Darter TD-DFT in NWChem 6.3 Basis Sets: Pople, Dunning DFT: LDA, PW91, PBE, B3LYP

References

ete, E. A.; Scuseria, G. E.; Ciofini, I.; Adamo, C.; J. Chem. **)8**. *4*, 123-135.

thelet, V.; Perpete, E. A.; Adamo, C.; J. Chem. Theory 120-2435.

ska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van lieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. 1477 (2010)

[4] Eberhard, K.; Gross, U.; Matira, N. T. Introduction to TDDFT. Fundamental of Time-Dependent Density Functional Theory. Springer Berlin Heidelberg:

Contact Information