

Runtime System and Out-of-Core Cholesky Factorization on the Intel Xeon Phi System

By Allan Richmond Morales and Tian Chong

Overview – Runtime System

- Basic Specifications:
 - ☐ Beacon: 157.3 TFLOPS (peak)
 - ☐ 672 processors and 42 active nodes in total
 - ☐ Four 1.054 GHz Intel Xeon Phi co-processors, each having 60 cores
 - ☐ Maximum Ideal Performance from coprocessors: 4040 GFLOPS
- Programming Environments:
 - ☐ PLASMA dense algebra algorithms
 - ☐ QUARK multithreading and task management
 - ☐ Intel MKL Library optimized math library for comparison with PLASMA
- Purpose:
 - Modifying the current OOC driver to implement QUARK threading and management in order to accomplish potential optimization
- All performance testing will rely on Native Mode Execution

FIXED FUNCTION LOGIC	VECTOR IA CORE	VECTOR IA CORE		VECTOR IA CORE	VECTOR IA CORE	ces
	INTERPROCESSOR NETWORK					ERFA
	COHERENT CACHE	COHERENT CACHE		COHERENT CACHE	COHERENT CACHE	MEMORY and I/O INTERFACES
	COHERENT CACHE	COHERENT CACHE		COHERENT CACHE	COHERENT CACHE	
	INTERPROCESSOR NETWORK					IORY
	VECTOR IA CORE	VECTOR IA CORE		VECTOR IA CORE	VECTOR IA CORE	MEM

Overview – Out of Core

[Title]

- [What is OOC algorithm]
- [How does it differ from standard Cholesky]
- What is the Task-Based DAG

Proposed Methodology

Figure 3.5: Pseudocode for the tile Cholesky factorization, when acting on a matrix. The lower figure visualizes a sequence of tasks unrolled by the loops.

Runtime Systems

- Understanding each programming environment
 - ☐ Matrix Multiplication & DGEMM (QUARK, PLASMA, Intel MKL)
 - ☐ Hello World Multithreading (QUARK, Intel MKL)
 - ☐ Performance Testing in seconds & GFLOPS (PLASMA, Intel MKL)
- Interacting with Beacon
 - ☐ Bash Scripting Interactive Jobs, Native Mode Execution
- End Goal
 - Optimizing the current runtime system using the current research Out of Core (OOC) Driver

- Out of Core Cholesky
- [What have you been reading?]
- [Any test code?]

Task-Based DAG

References

- Betro, Vincent. Beacon Quickstart Guide at AACE/NICS
- Betro, Vincent. <u>Beacon Training: Using the Intel Many</u> <u>Integrate Core (MIC) Architecture: Native Mode and Intel</u> <u>MPI</u>. March 2013
- Dongarra, Jack, et al. <u>PLASMA Users' Guide Version 2.3</u>. Sept. 2010
- Kurzak, Jakub. <u>PLASMA/QUARK and DPLASMA/PaRSEC</u> tutorial: ICL UT Innovative Computing Laboratory.
- YarKhan, Asim, Jakub Kurzak, and Jack Dongarra. <u>QUARK</u> <u>Users' Guide</u>. April 2011