
Computational Science for Undergraduate Research Experience (CSURE) 2014

Students: Allan Richmond Razon Morales (GWU) and Chong Tian (CUHK)
Mentors: Dr. Kwai Wong (UT), Dr. Eduardo D’Azevedo (ORNL)
Collaborators: Dr. Shiquan Su (NICS), Dr. Asim YarKhan (UT), Ben Chan

�  Basic Specifications:
q  Beacon: 157.3 TFLOPS (peak)
q  48 compute nodes
q  Each node has access to four Intel Xeon Phi

co-processors 5110P (MIC) and two 8-core
Intel Xeon E5-2670 processors

�  Goals:
q  Compare different runtime systems that can

be run on the Intel Xeon Phi System
q  Utilize QUARK within this system
q  Optimize the QUARK performance tests to

see if the program can be scaled efficiently

�  Performance testing was conducted on the
host processor and its coprocessors through its
normal execution.

2 x Intel Xeon Processor E5-2670

•  16 cores per node (8 per processor)

•  2.600 GHz Clock Speed

•  256 GB RAM

�  Pro: More Memory (8x more)
�  Con: Less Computational Power

4 x Intel Xeon Phi Coprocessor 5110P

•  60 cores

•  1.053 GHz Clock Speed

•  8 GB RAM

�  Pro: More Computational Power (more cores)
�  Con: Less Memory

�  Host: Normal Execution through host processor (compute node)
�  Native: Execution runs only directly on the co-processor (MIC)
�  Offload: Run on the host processor and then “offloads” dense

 calculations to the co-processor (Ideal for the OOC algorithm)

�  Runtime Systems

Ø  Understanding each programming environment
q Nested-For Loop Matrix Multiplication (MM) – QUARK
q DGEMM – PLASMA, Intel MKL
q Cholesky – Intel MKL

Ø  All modes of executions were considered and tested

	
!

�

� Cholesky Factorization
�  Task DAG and QUARK
� OOC algorithm
�  Further goals

�  Step 1: L11 <-- cholesky(A11) , !

Step 2: L21 <-- A21 / L11
T, <Panel factorization>!

Step 3: A22 <-- A22 – L21 * L21
T, <Trailing submatrix update>!

Step 4:L22 <-- cholesky(A22),

A00 A01

A10 A11

L00

L10 L11

A00! A01! …! A0k! …! A0n!

A10! A11! …! …! …! …!

…! …!

Ak0! Akk!

…! …!

An0! Ann!

A00 A01

A10 A11

for k=0…n-1!
 for j=k…n-1!
 for i=j…n-1 {!
 if (i=j=k) potrf (A(i,j)r, A(i,j)w)!
 if (i>j=k) trsm (A(i,j)r, A(k,k)r, A(i,j)w)!

 if (i=j>k) syrk (A(i,j)r, A(i,k)r, A(i,j)w) !
 if (i>j>k) gemm (A(i,j)r, A(i,k)r, A(j,k)r, A(i,j)w)}!

void CORE_incore_dpotrf(Quark *quark)

void QUARK_incore_dpotrf(Quark *quark,Quark_Task_Flags *task_flags, int uplo,
int n, double *A,int nb)

……

/*1. dpotrf type:(k,k,k)*/
 if((j_==k_)&&(i_==j_))
 {
 /*set task flags*/
 Quark_Task_Flags tflags=Quark_Task_Flags_Initializer;
 QUARK_Task_Flag_Set(&tflags,TASK_PRIORITY,3);
 /*Insert the dpotrf task*/
 QUARK_incore_dpotrf(quark,&tflags,(int)'L',NB,A2[i_][j_],NB);
 continue;
 }

!

� Motivation: CPU vs Coprocessor

CPU! Coprocessors(GPU,Intel MIC,etc.)!

Slower than Coprocessors for some
certain computations like dense
matrix multiplication.

Larger memory size!

Much faster and more energy efficient

Limited amount of device memory

Data movement is expensive!

Out-of-core part! In-core Part!
1.  Loads Y panels to the device

memory
2.  Apply the update from the part

already factorized.,which is
called “left-looking” update.!

Factorize the sub-matrix residing
on device memory,in which “right-
looking” update is involved.!

/*Out of core part:(starting from the A(k,k) tile)*/!
 /*O1.Send in Y-panel*/!
 for j=k:1:k+sizeY-1
/*Expected optimization 0:find the optimal Y size*/
!
 for i=j:1:n!
 H2D_Copy A(i,j) -> Y(i,j)!
/*Expected optimization 1:Since the right part of the

lower part of "A“ shrinks. for the same amount of
space dedicated to the Y panel, we may use a
wider Y-panel to store as many tiles as possible*/!

 /*O2.Left looking update,if not the first Y-panel*/!
 /*Send factorized columns into X panel*/!
 for i=1:1:k-1!
 {!
 for j=k:1:n!
 H2D_Copy L(i,j)->X(j)
/*Expected optimization 2:Some factorized panels can be

copied into X panel immediately before written back to
CPU */!

 for q=k:1:k+sizeY-1!
 for p=q:1:n
 if(p==q) dsyrk(Y(p,q),X(p))!
 else dgemm(Y(p,q),X(p),X(q)T)}
 /*Expected optimization 3:Use double buffering—

while one X panel is doing dgemm,the other can be
reading data concurrently*/!

 /*In core part : similar to the general

Cholesky factorization,except there are
extra data movements,especially from Y
panel to X panel or to CPU*/

/*Expected optimization 5:Perform all dpotrf()

operations on CPU*/

�

�  1.Complete the code combining OOC
algorithm and general Cholesky factorization.

�  2.Extend to multiple MPI processes case.

�  3.Extend to LU factorization with pivoting
and QR factorization.!

�  Which mode of execution is the most
scalable?

�  Is there a threshold or condition where the

performance begins to remain constant or
even fails?

Testing Routines:
1.  QUARK MM
2.  PLASMA DGEMM Tiled
3.  Intel MKL DGEMM
4.  Intel MKL SPOTRF (Cholesky Factorization)

Measuring GFLOPS/s : (“Giga” Floating Operations per second)
1.  For matrix multiplication and DGEMM:

2.  For Cholesky Factorization (SPOTRF):

	 	 NB=100	 NB=250	 NB=500	 NB=1000	

4	 threads	 13.46281933	 12.5576024	 12.173018	 9.01319071	

8	 threads	 26.77594129	 24.3421548	 23.656976	 14.8945193	

16	 threads	 52.32566097	 47.4777321	 45.76333371	 23.1449664	

32	 threads	 53.95652097	 50.2472455	 32.62076229	 22.262155	

64	 threads	 52.23276839	 49.5421097	 20.25220514	 13.0737957	

	 	 NB=100	 NB=250	 NB=500	 NB=1000	

4	 threads	 0.99663077	 1.38587357	 1.496806	 1.63284111	

8	 threads	 1.70272846	 2.15796714	 2.21691933	 2.22034778	

16	 threads	 3.03245308	 3.69681071	 3.537532	 3.36262222	

32	 threads	 5.5189	 6.481805	 5.77946333	 4.94149778	

64	 threads	 9.96874769	 11.3790614	 9.487648	 6.68409111	

�  OMP_NUM_THREADS:

�  Each coprocessor has 60 cores
�  Beacon has 4 per node.
�  Therefore, maximum value is 240.

�  KMP_AFFINITY:

�  Compact: Sequential Queuing
�  Balanced: Threads allocated evenly among cores

�  Serial and OpenMP– results barely suffice for
comparison

○  ~0.6 GFLOPS/second for Serial
○  ~0.6 GFLOPS/second for OpenMP (MIC)
○  ~1.2 GFLOPS/second for OpenMP (Host)

�  Optimize QUARK implementations (matrix

multiplication, DGEMM) with additional OpenMP
and Offloading directives to produce better
performance.

�  Incorporate the OOC Cholesky Factorization into
QUARK and implement onto Beacon.

�  QUARK implementation needs to be optimized to better utilize the

MIC’s computational power.

�  Given the range of 500:15000 at steps of 500 for the PLASMA
DGEMM trial, increasing the tile size yielded better performance but
increasing the number of threads proved insignificant.

�  As expected, Intel’s optimized MKL performs 2.96x better than
PLASMA’s DGEMM on the MIC:

 828.96038 and 279.89 GFLOPS/s respectively

�  After running a number of stress tests for the Intel MKL Cholesky
factorization, the best result at 741.18587 GFLOPS/s was attained by
using the maximum number of available cores
(OMP_NUM_THREADS=240) and organizing these cores in a
compact manner (KMP_AFFINITY=compact).

�  Betro, Vincent. Beacon Quickstart Guide at AACE/NICS

�  Betro, Vincent. Beacon Training: Using the Intel Many Integrate Core

(MIC) Architecture: Native Mode and Intel MPI. March 2013

�  Dongarra, Jack, et al. PLASMA Users’ Guide Version 2.3. Sept. 2010

�  Kurzak, Jakub. PLASMA/QUARK and DPLASMA/PaRSEC tutorial: ICL

UT Innovative Computing Laboratory.

�  YarKhan, Asim. Dynamic Task Execution on Shared and Distributed

Memory Architectures. Dec. 2012.

�  YarKhan, Asim, Jakub Kurzak, and Jack Dongarra. QUARK Users’

Guide. April 2011

�  Images were derived from Google Images or their respective source
(i.e., Intel)

�  Dr. Kwai Wong + Dr. Christian Halloy, the JICS CSURE

REU coordinators

�  University of Tennessee for access to Star1 and the NICS
conference rooms

�  Oak Ridge National Laboratory for remote access to
Beacon

�  Ben Chan, Dr. Kwai Wong (UT), Dr. Asim YarKhan (UT), Dr.
Eduardo D’Azevedo (ORNL), Dr. Shiquan Su (NICS), and
XSEDE Help for all the documentation and help to progress
in this research

�  The National Science Foundation (NSF) for funding the
CSURE Program

Ø  For questions about QUARK or PLASMA,
please contact Dr. YarKhan

Ø  For questions about the CSURE program,
please contact Dr. Wong.

Ø  For questions about how this research was
conducted, please contact Allan Richmond
(arrm93@gwu.edu) or Terrence
(tc92321@hotmail.com)

Ø  For fast troubleshooting help for Beacon, the
Intel Xeon Phi System, or general

 supercomputing tips, contact XSEDE help
 email “help@xsede.org”

