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�  Basic Specifications: 
q  Beacon: 157.3 TFLOPS (peak) 
q  48 compute nodes 
q  Each node has access to four Intel Xeon Phi 

co-processors 5110P (MIC) and two 8-core 
Intel Xeon E5-2670 processors  

 

�  Goals:   
q  Compare different runtime systems that can 

be run on the Intel Xeon Phi System 
q  Utilize QUARK within this system 
q  Optimize the QUARK performance tests to 

see if the program can be scaled efficiently 
 

�  Performance testing was conducted on the 
host processor and its coprocessors through its 
normal execution. 



 

2 x Intel Xeon Processor E5-2670 

•  16 cores per node (8 per processor) 

•  2.600 GHz Clock Speed 

•  256 GB RAM 

�  Pro: More Memory (8x more) 
�  Con: Less Computational Power 

4 x Intel Xeon Phi Coprocessor 5110P 

•  60 cores 

•  1.053 GHz Clock Speed 

•  8 GB RAM 

 
�  Pro: More Computational Power (more cores) 
�  Con: Less Memory 
 



 



 

 
�  Host: Normal Execution through host processor (compute node) 
�  Native: Execution runs only directly on the co-processor (MIC) 
�  Offload: Run on the host processor and then “offloads” dense 

 calculations to the co-processor (Ideal for the OOC algorithm) 
 
 



 

�  Runtime Systems 
 

Ø  Understanding each programming environment 
q Nested-For Loop Matrix Multiplication (MM) – QUARK 
q DGEMM – PLASMA, Intel MKL 
q Cholesky – Intel MKL 
 

Ø  All modes of executions were considered and tested 



	  
!

�

� Cholesky Factorization 
�  Task DAG and QUARK 
� OOC algorithm 
�  Further goals 



 
�  Step 1: L11 <-- cholesky( A11 ) ,  !

Step 2: L21 <-- A21 / L11
T,                             <Panel factorization>!

Step 3: A22 <-- A22 – L21 * L21
T,             <Trailing  submatrix  update>!

Step 4:L22 <-- cholesky( A22 ),    
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for k=0…n-1!
    for j=k…n-1!
        for i=j…n-1 {!
           if (i=j=k)  potrf (A(i,j)r, A(i,j)w)!
          if (i>j=k)  trsm (A(i,j)r, A(k,k)r, A(i,j)w)!

      if (i=j>k)  syrk (A(i,j)r, A(i,k)r, A(i,j)w)  !
       if (i>j>k)  gemm (A(i,j)r, A(i,k)r, A(j,k)r, A(i,j)w)}!

 



 
 
 

 
 



 

 
 



 



 



 
 
 

 
 

void CORE_incore_dpotrf( Quark *quark ) 
 
void QUARK_incore_dpotrf( Quark *quark,Quark_Task_Flags *task_flags, int uplo, 
int n, double *A,int nb ) 
 
…… 
 
/*1. dpotrf type:(k,k,k)*/ 
                 if((j_==k_)&&(i_==j_)) 
                 { 
                     /*set task flags*/ 
                     Quark_Task_Flags tflags=Quark_Task_Flags_Initializer; 
                     QUARK_Task_Flag_Set(&tflags,TASK_PRIORITY,3); 
                     /*Insert the dpotrf task*/ 
                     QUARK_incore_dpotrf(quark,&tflags,(int)'L',NB,A2[i_][j_],NB); 
                     continue; 
                 } 
 
!



 
 

� Motivation: CPU vs Coprocessor 
 

 
 

 

CPU! Coprocessors(GPU,Intel MIC,etc.)!

Slower than Coprocessors for some 
certain computations like  dense 
matrix multiplication. 
 
Larger memory size!

Much faster and more energy efficient 
 
 
Limited amount of device memory 
 
 
Data movement is expensive!



 
 
 

 
 

 
 

 

Out-of-core part! In-core Part!
1.  Loads Y panels to the device 

memory  
2.   Apply the update from the part 

already factorized.,which is 
called “left-looking” update.!

Factorize the sub-matrix residing 
on device memory,in which “right-
looking” update is involved.!



 
/*Out of core part:(starting from the A(k,k) tile)*/!
    /*O1.Send in Y-panel*/!
    for j=k:1:k+sizeY-1  
/*Expected optimization 0:find the optimal Y size*/  
!
        for i=j:1:n!
            H2D_Copy A(i,j) -> Y(i,j)!
/*Expected optimization 1:Since the right part of the 

lower part of "A“ shrinks. for the same amount of 
space dedicated to the Y panel, we may use a 
wider Y-panel to store as many tiles as possible*/!

 
 
 

 
 

 
 

 

 



 
    /*O2.Left looking update,if not the first Y-panel*/!
        /*Send factorized columns into X panel*/!
        for i=1:1:k-1!
        {!
            for j=k:1:n!
                H2D_Copy L(i,j)->X(j) 
/*Expected optimization 2:Some factorized panels can be 

copied into X panel immediately before written back to 
CPU */!

            for q=k:1:k+sizeY-1!
                    for p=q:1:n 
                          if(p==q) dsyrk(Y(p,q),X(p))!
                         else dgemm(Y(p,q),X(p),X(q)T)} 
            /*Expected optimization 3:Use double buffering—

while one X panel is doing dgemm,the other can be 
reading data concurrently*/!

 
 
 

 
 

 
 

 

 



 
    /*In core part : similar to the general 

Cholesky factorization,except there are 
extra data movements,especially from Y 
panel to X panel or to CPU*/ 

    
/*Expected optimization 5:Perform all dpotrf() 

operations on CPU*/ 
 

 
 

 
 

 

 



 



�

�  1.Complete the code combining OOC 
algorithm and general Cholesky factorization. 

�  2.Extend to multiple MPI processes case. 

�  3.Extend to LU factorization with pivoting 
and QR factorization.!



 

�  Which mode of execution is the most 
scalable? 

 
�  Is there a threshold or condition where the 

performance begins to remain constant or 
even fails? 

 



 
Testing Routines: 
1.  QUARK MM 
2.  PLASMA DGEMM Tiled 
3.  Intel MKL DGEMM 
4.  Intel MKL SPOTRF (Cholesky Factorization) 
 
Measuring GFLOPS/s : (“Giga” Floating Operations per second) 
1.  For matrix multiplication and DGEMM:  

2.  For Cholesky Factorization (SPOTRF): 



 
	  	   NB=100	   NB=250	   NB=500	   NB=1000	  

4	  threads	   13.46281933	   12.5576024	   12.173018	   9.01319071	  

8	  threads	   26.77594129	   24.3421548	   23.656976	   14.8945193	  

16	  threads	   52.32566097	   47.4777321	   45.76333371	   23.1449664	  

32	  threads	   53.95652097	   50.2472455	   32.62076229	   22.262155	  

64	  threads	   52.23276839	   49.5421097	   20.25220514	   13.0737957	  

	  	   NB=100	   NB=250	   NB=500	   NB=1000	  

4	  threads	   0.99663077	  1.38587357	   1.496806	  1.63284111	  

8	  threads	   1.70272846	  2.15796714	  2.21691933	  2.22034778	  

16	  threads	   3.03245308	  3.69681071	   3.537532	  3.36262222	  

32	  threads	   5.5189	   6.481805	  5.77946333	  4.94149778	  

64	  threads	   9.96874769	  11.3790614	   9.487648	  6.68409111	  



 



 



 



 



 
�  OMP_NUM_THREADS: 

�  Each coprocessor has 60 cores 
�  Beacon has 4 per node. 
�  Therefore, maximum value is 240. 

 
�  KMP_AFFINITY: 

�  Compact: Sequential Queuing 
�  Balanced: Threads allocated evenly among cores 

 
 
 



 



 



 



 

�  Serial and OpenMP– results barely suffice for 
comparison 

○  ~0.6 GFLOPS/second for Serial 
○  ~0.6 GFLOPS/second for OpenMP (MIC) 
○  ~1.2 GFLOPS/second for OpenMP (Host) 



 
�  Optimize QUARK implementations (matrix 

multiplication, DGEMM) with additional OpenMP 
and Offloading directives to produce better 
performance. 

�  Incorporate the OOC Cholesky Factorization into 
QUARK and implement onto Beacon. 



 



 
�  QUARK implementation needs to be optimized to better utilize the 

MIC’s computational power. 
 

�  Given the range of 500:15000 at steps of 500 for the PLASMA 
DGEMM trial, increasing the tile size yielded better performance but 
increasing the number of threads proved insignificant. 

�  As expected, Intel’s optimized MKL performs 2.96x better than 
PLASMA’s DGEMM on the MIC:   

 828.96038 and 279.89 GFLOPS/s respectively 
 

�  After running a number of stress tests for the Intel MKL Cholesky 
factorization, the best result at 741.18587 GFLOPS/s was attained by 
using the maximum number of available cores 
(OMP_NUM_THREADS=240)  and organizing these cores in a 
compact manner (KMP_AFFINITY=compact). 



�  Betro, Vincent. Beacon Quickstart Guide at AACE/NICS 
 
�  Betro, Vincent. Beacon Training: Using the Intel Many Integrate Core 

(MIC) Architecture: Native Mode and Intel MPI. March 2013 
 
�  Dongarra, Jack, et al. PLASMA Users’ Guide Version 2.3. Sept. 2010  
 
�  Kurzak, Jakub. PLASMA/QUARK and DPLASMA/PaRSEC tutorial: ICL 

UT Innovative Computing Laboratory. 
 
�  YarKhan, Asim. Dynamic Task Execution on Shared and Distributed 

Memory Architectures. Dec. 2012.  
 
�  YarKhan, Asim, Jakub Kurzak, and Jack Dongarra. QUARK Users’ 

Guide. April 2011 

�  Images were derived from Google Images or their respective source 
(i.e., Intel) 



 
�  Dr. Kwai Wong + Dr. Christian Halloy, the JICS CSURE 

REU coordinators 
 

�  University of Tennessee for access to Star1 and the NICS 
conference rooms 

�  Oak Ridge National Laboratory for remote access to 
Beacon 

 

�  Ben Chan, Dr. Kwai Wong (UT), Dr. Asim YarKhan (UT), Dr. 
Eduardo D’Azevedo (ORNL), Dr. Shiquan Su (NICS), and 
XSEDE Help for all the documentation and help to progress 
in this research 

 

�  The National Science Foundation (NSF) for funding the 
CSURE Program 



Ø  For questions about QUARK or PLASMA, 
please contact Dr. YarKhan 

Ø  For questions about the CSURE program, 
please contact Dr. Wong. 

Ø  For questions about how this research was 
conducted, please contact Allan Richmond 
(arrm93@gwu.edu) or Terrence 
(tc92321@hotmail.com) 

Ø  For fast troubleshooting help for Beacon, the 
Intel Xeon Phi System, or general 

        supercomputing tips, contact XSEDE help 
        email “help@xsede.org” 


