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 We will explore how different runtime systems can be implemented 

on the Intel Xeon Phi System on Beacon. This coprocessor does have its own 

Intel MKL library that implements BLAS and LAPACK functionality. For this 

research, we will first explore how to utilize PLASMA for handling dense 

linear algebra computations and QUARK for task management and added 

parallelism to figure out the dependencies between the tasks and the 

scheduler. Once accomplished, these algorithms will be rigorously tested on 

the Beacon’s MIC card for performance analysis and comparison with the 

standard Intel MKL implementation. Another goal is to implement a hybrid 

Out-of-Core algorithm for Cholesky factorization that can be used in 

conjunction with the PLASMA/QUARK implementation to see if its 

performance is efficient and scalable. 
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 Cholesky Factorization: A=LLT. 

 
 
 
 

Cholesky steps on matrix blocks 
Ø  Step 1: L11 <-- cholesky( A11 ) ,potrf() 

Ø  Step 2: L21 <-- A21 / L11
T, trsm() 

Ø  Step 3: A22 <-- A22 – L21 * L21
T, syrk() and gemm() 

Ø  Step 4: L22 <-- cholesky( A22 ),  potrf() 
 
 
 

Ø  Tasks in Cholesky factorization depend on previous tasks if they use the 

same tiles of data. If we use a node to represent an operation on a tile 

and use an edge to represent a data dependency, then a DAG is formed. 
 

Ø  Once the DAG is produced and fed into the QUARK runtime system, 

tasks can be scheduled asynchronously and independently as long as the 

dependencies are not violated. (Eg.4 by 4 case) 

 

Pseudocode for DAG: 
for k=0…n-1 
    for j=k…n-1 
        for i=j…n-1 { 
           if (i=j&&j=k)  potrf (A(i,j,k-1)r, A(i,j,k )w) 
          if (i>j&&j=k)  trsm (A(i,j,k-1)r, A(k,k,k)r, A(i,j,k)w) 

      if (i=j&&j>k)  syrk (A(i,j,k-1)r, A(i,k,k)r, A(i,j,k)w)   
       if (i>j&&j>k)  gemm (A(i,j,k-1)r, A(i,k,k)r,A(j,k,k)r,A(i,j,k)w) } 
 

 
 

Ø  OOC stores most data on CPU memory and brings small pieces of data 

into coprocessors for computation, and then write them back. 

Ø  CPU vs coprocessors( GPU, MIC, etc.):GPU is much faster and more 

energy efficient than CPU but has limited amount of device memory. 
 
 

EXPECTED GOALS 

•  PLASMA – dense algebra algorithms 

•  QUARK – multithreading and task management 

•  Intel MKL Library – optimized math library for comparison 

There are two primary modes of execution for Beacon: Native and Offload. 

The former runs executables directly into the co-processor (MIC). The goal 

for further optimization is using Offload Mode, which will run on the host 
processor and “offload” the dense calculations to the co-processor.  

MODES OF EXECUTION 

 
Runtime Systems 
 

•  Optimize QUARK implementations (matrix multiplication, DGEMM) with additional 
OpenMP and Offloading directives to produce better performance. 

 

•  Incorporate the OOC Cholesky Factorization into QUARK and implement onto 
Beacon. 

OOC Cholesky Factorization: 
 

•  Complete the code combining OOC algorithm and general Cholesky factorization. 
 

•  Extend to multiple MPI processes case. 
 

•  Extend to LU factorization with pivoting and QR factorization. 
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TASK DIRECTED ACYCLIC GRAPH (DAG) 

Performance Testing in seconds, GFLOPS, GLOPS/sec 
 (“Giga Floating Operations Per Second”)  

 

1.   Nested-For Loop Matrix Multiplication (MM) - QUARK 

2.   DGEMM - PLASMA, Intel MKL 

3.   Cholesky - Intel MKL 
 

Ø Both Native and Offload Execution were taken into consideration 

Ø  I have modified example code from Dr. Asim YarKhan for a QUARK-multithreaded, 

tiled-routine matrix multiplication driver that will measure the performance in 

seconds and GFLOPS and print this data in a user-friendly manner to be used on 

any graphing software. 
 

Ø  To generate GFLOPS/sec, under the assumption that C = A * B where A,B,C are 

symmetric matrices (n by n), then the general formula would be:   

PROPOSED METHODOLOGY 

BEACON ARCHITECTURE: INTEL XEON PHI 

OBJECTIVE 

4 x Intel Xeon Phi Coprocessor 5110P 
•  60 cores 

•  1.053 GHz Clock Speed 

•  8 GB RAM 

Intel Xeon Processor E5-2670 
•  2 x 8 cores (16 in total per node) 

•  2.600 GHz Clock Speed 

•  256 GB RAM 

58 nodes 
(48 compute, 4 
service, 6 I/O) 
 

Total  
Cores 
Available: 
768 OUT-OF-CORE ALGORITHM (OOC) 

OOC STRUCTURE 
Ø  The out-of-core part loads parts of the matrix. For example, matrix 

panels,to device memory,and applies the “left-looking” update from the 
parts already factorized and written back. 

Ø  The In-core part factorizes the parts residing on device memory in which 
“right-looking” update is involved. 

Ø  Out-of-core Cholesky DAG: (Eg.4 by 4 case) 
 

NESTED FOR-LOOP  
MATRIX MULTIPLICATION RESULTS 

OBSERVATION: Different Threading 
 
GFLOPS are all consistent  
GFLOP/sec are more conclusive 
 
 
 

Ø  The general trend for the HOST shows optimal performance at 16 threads; 

though at smaller tile sizes, this threshold can be 32 threads. 
 

Ø  The general trend for the MIC shows that optimal performance can be attained 

at 64 threads, and the data proves to be scalable; however, the actual 

performance is significantly slower than that on the HOST. 
 

Ø  The performance is still poor (~50 GFLOPS/sec on HOST and ~10 GFLOPS/sec on 

MIC) but there is possibility for increased performance through offloading and 

added parallelism. 

DGEMM 

	  	   NB=100	   NB=250	   NB=500	   NB=1000	  

4	  threads	   13.46	   12.56	   12.17	   9.01	  

8	  threads	   26.78	   24.34	   23.66	   14.89	  

16	  threads	   52.33	   47.48	   45.76	   23.14	  

32	  threads	   53.96	   50.25	   32.62	   22.62	  

64	  threads	   52.23	   49.54	   20.25	   13.07	  

     

           

Ø  Intel’s MKL Library has been advertised 
to have its functions optimized (i.e., 
DGEMM = 833 GFLOPS/s); therefore, this 
test was recreated. 

 

 
 

Ø  PLASMA is installed as a module within 

    Beacon, and a separate environment was 

    installed on the HOST for comparison data 

    The routine is optimized through a tiled  

    routine similar to the QUARK MM. 

MIC Environment Variables: 
 

Ø  OMP_NUM_THREADS: 
-  In Beacon, each node has 4 MIC, each 

with 60 cores (MAX VALUE = 240). 
 

Ø  KMP_AFFINITY: 
-  Compact: Sequential Queuing 

-  Balanced: Threads allocated   
     evenly among cores 

 
 
 
 

Ø  The test was successful. 
     Given the maximum  
     number of threads and 
     setting the core  
     organization to balanced, 
     the results matched. 

Ø  Formula for GFLOPS/s:  

Ø  Single Precision Cholesky 

Factorization was tested on different 

modes of execution. 

Ø  MAX GFLOPS/sec was achieved at 

~745 within the MIC. 

Ø  Given the MIC environment variables, 

a stress test was implemented to see 

what were the ideal conditions for 

getting a similar performance output. 

Ø  Best overall performance was 

attained from using 240 threads and 

organizing in a compact manner. 

CODE GENERATING DAG&CODE USING QUARK 

void CORE_dgemm_quark(Quark *quark); //body omitted 
void QUARK_CORE_dgemm(Quark *quark, Quark_Task_Flags *task_flags, PLASMA_enum 
transA, PLASMA_enum transB,int m, int n, int k, int nb,double alpha, const double *A, int 
lda,const double *B, int ldb,double beta, double *C, int ldc); //body omitted 
…… 
    if((j>k)&&(i>j)) //dgemm type:(i,j,k),wherei>j>k* 
    {                
        Quark_Task_Flags  tflags=Quark_Task_Flags_Initializer; //initailize the task               
        QUARK_Task_Flag_Set(&tflags,TASK_PRIORITY,1);  //set task attributes like priority 
        
QUARK_CORE_dgemm(quark,&tflags,CblasNoTrans,CblasTrans,NB,NB,NB,NB,-1.0,&A2(0,0,
i,k),NB,&A2(0,0,j,k),NB,1.0,&A2(0,0,i,j),NB);  // pass  the arguments ,where data dependencies 
are implied                                                                                                                       
        continue; } 
 

A11 A12 

A21 A22 

L11 

L21 L22 

struct Label{long I;long J;long K;}; 
struct List{long node;label Node;char type;label in[3];label out[n-1];}; 
… 
    if((j>k)&&(i>j)) //dgemm type:(i,j,k),wherei>j>k 
    { 
        list[count].Node=assignlabel(i,j,k); list[count].node=(i+1+j*n)+k*n*n;  list[count].type='M';  
        fprintf(fp,"%ld[label=\"(%ld,%ld,%ld)|GEMM\",color=forestgreen];\n",list[count].node,i,j,k); 
         //assign node atrributes like label,color and so on 
        for(q=0;q<3;q++)//Traverse the  in-nodes and specify the data dependencies by edges 
        {        
             if (!((list[count].in[q].I==-1)||(list[count].in[q].J==-1)||(list[count].in[q].K==-1)))  
             fprintf(fp,"%ld- >%ld;",(list[count].in[q].I+1+list[count].in[q]. J*n+list[count].in[q].K*n*n), 
list[count].node); }     
        fprintf(fp,"{rank=same;depth%ld %ld}\n",(3*k+3),list[count].node); //mark the depth 
    …… 
    } 

	  	   NB=100	   NB=250	   NB=500	   NB=1000	  

4	  threads	   1.00	   1.39	   1.50	   1.63	  

8	  threads	   1.70	   2.16	   2.22	   2.22	  

16	  threads	   3.03	   3.70	   3.54	   3.36	  

32	  threads	   5.52	   6.48	   5.78	   4.94	  

64	  threads	   9.97	   11.38	   9.49	   6.68	  


