
TEMPLATE DESIGN © 2008 www.PosterPresentations.com

VISUAL OF THE OVERVIEW

TEAM INFO

SPOTRF (CHOLESKY FACTORIZATION MKL) CHOLESKY FACTORIZATION

REFERENCES

 We will explore how different runtime systems can be implemented

on the Intel Xeon Phi System on Beacon. This coprocessor does have its own

Intel MKL library that implements BLAS and LAPACK functionality. For this

research, we will first explore how to utilize PLASMA for handling dense

linear algebra computations and QUARK for task management and added

parallelism to figure out the dependencies between the tasks and the

scheduler. Once accomplished, these algorithms will be rigorously tested on

the Beacon’s MIC card for performance analysis and comparison with the

standard Intel MKL implementation. Another goal is to implement a hybrid

Out-of-Core algorithm for Cholesky factorization that can be used in

conjunction with the PLASMA/QUARK implementation to see if its

performance is efficient and scalable.

Authors: Allan Richmond Razon Morales (The George Washington University), Tian Chong (The Chinese University of Hong Kong) Mentors: Dr. Kwai Wong (UTK), Dr. Eduardo D’Azevedo (ORNL)
Runtime Systems and Out-of-Core Cholesky Factorization on the Intel Xeon Phi System

 Cholesky Factorization: A=LLT.

Cholesky steps on matrix blocks
Ø  Step 1: L11 <-- cholesky(A11) ,potrf()

Ø  Step 2: L21 <-- A21 / L11
T, trsm()

Ø  Step 3: A22 <-- A22 – L21 * L21
T, syrk() and gemm()

Ø  Step 4: L22 <-- cholesky(A22), potrf()

Ø  Tasks in Cholesky factorization depend on previous tasks if they use the

same tiles of data. If we use a node to represent an operation on a tile

and use an edge to represent a data dependency, then a DAG is formed.

Ø  Once the DAG is produced and fed into the QUARK runtime system,

tasks can be scheduled asynchronously and independently as long as the

dependencies are not violated. (Eg.4 by 4 case)

Pseudocode for DAG:
for k=0…n-1
 for j=k…n-1
 for i=j…n-1 {
 if (i=j&&j=k) potrf (A(i,j,k-1)r, A(i,j,k)w)
 if (i>j&&j=k) trsm (A(i,j,k-1)r, A(k,k,k)r, A(i,j,k)w)

 if (i=j&&j>k) syrk (A(i,j,k-1)r, A(i,k,k)r, A(i,j,k)w)
 if (i>j&&j>k) gemm (A(i,j,k-1)r, A(i,k,k)r,A(j,k,k)r,A(i,j,k)w) }

Ø  OOC stores most data on CPU memory and brings small pieces of data

into coprocessors for computation, and then write them back.

Ø  CPU vs coprocessors(GPU, MIC, etc.):GPU is much faster and more

energy efficient than CPU but has limited amount of device memory.

EXPECTED GOALS

•  PLASMA – dense algebra algorithms

•  QUARK – multithreading and task management

•  Intel MKL Library – optimized math library for comparison

There are two primary modes of execution for Beacon: Native and Offload.

The former runs executables directly into the co-processor (MIC). The goal

for further optimization is using Offload Mode, which will run on the host
processor and “offload” the dense calculations to the co-processor.

MODES OF EXECUTION

Runtime Systems

•  Optimize QUARK implementations (matrix multiplication, DGEMM) with additional
OpenMP and Offloading directives to produce better performance.

•  Incorporate the OOC Cholesky Factorization into QUARK and implement onto
Beacon.

OOC Cholesky Factorization:

•  Complete the code combining OOC algorithm and general Cholesky factorization.

•  Extend to multiple MPI processes case.

•  Extend to LU factorization with pivoting and QR factorization.

•  Betro, Vincent. Beacon Quickstart Guide at AACE/NICS

•  Betro, Vincent. Beacon Training: Using the Intel Many Integrate Core (MIC)
Architecture: Native Mode and Intel MPI. March 2013

•  D’Azevedo, Eduardo, Shiquan Su, and Kwai Wong. A Performance Study of Solving

a Large Dense Matrix for Radiation Heat Transfer.

•  Intel. https://software.intel.com/en-us/mic-developer

•  YarKhan, Asim. Dynamic Task Execution on Shared and Distributed Memory
Architectures. Dec. 2012.

•  YarKhan, Asim, Jakub Kurzak, and Jack Dongarra. QUARK Users’ Guide. April 2011

•  Images are provided by Google Images, their respective websites,
 or generated using software

u  Authors: Allan Richmond Razon Morales and Tian Chong

u  Mentors: Dr. Kwai Wong and Dr. Eduardo D’Azevedo

u  Collaborators: Dr. Shiquan Su, Dr. Asim YarKhan, and Ben Chan

TASK DIRECTED ACYCLIC GRAPH (DAG)

Performance Testing in seconds, GFLOPS, GLOPS/sec
 (“Giga Floating Operations Per Second”)

1.   Nested-For Loop Matrix Multiplication (MM) - QUARK

2.   DGEMM - PLASMA, Intel MKL

3.   Cholesky - Intel MKL

Ø Both Native and Offload Execution were taken into consideration

Ø  I have modified example code from Dr. Asim YarKhan for a QUARK-multithreaded,

tiled-routine matrix multiplication driver that will measure the performance in

seconds and GFLOPS and print this data in a user-friendly manner to be used on

any graphing software.

Ø  To generate GFLOPS/sec, under the assumption that C = A * B where A,B,C are

symmetric matrices (n by n), then the general formula would be:

PROPOSED METHODOLOGY

BEACON ARCHITECTURE: INTEL XEON PHI

OBJECTIVE

4 x Intel Xeon Phi Coprocessor 5110P
•  60 cores

•  1.053 GHz Clock Speed

•  8 GB RAM

Intel Xeon Processor E5-2670
•  2 x 8 cores (16 in total per node)

•  2.600 GHz Clock Speed

•  256 GB RAM

58 nodes
(48 compute, 4
service, 6 I/O)

Total
Cores
Available:
768 OUT-OF-CORE ALGORITHM (OOC)

OOC STRUCTURE
Ø  The out-of-core part loads parts of the matrix. For example, matrix

panels,to device memory,and applies the “left-looking” update from the
parts already factorized and written back.

Ø  The In-core part factorizes the parts residing on device memory in which
“right-looking” update is involved.

Ø  Out-of-core Cholesky DAG: (Eg.4 by 4 case)

NESTED FOR-LOOP
MATRIX MULTIPLICATION RESULTS

OBSERVATION: Different Threading

GFLOPS are all consistent
GFLOP/sec are more conclusive

Ø  The general trend for the HOST shows optimal performance at 16 threads;

though at smaller tile sizes, this threshold can be 32 threads.

Ø  The general trend for the MIC shows that optimal performance can be attained

at 64 threads, and the data proves to be scalable; however, the actual

performance is significantly slower than that on the HOST.

Ø  The performance is still poor (~50 GFLOPS/sec on HOST and ~10 GFLOPS/sec on

MIC) but there is possibility for increased performance through offloading and

added parallelism.

DGEMM

	 	 NB=100	 NB=250	 NB=500	 NB=1000	

4	 threads	 13.46	 12.56	 12.17	 9.01	

8	 threads	 26.78	 24.34	 23.66	 14.89	

16	 threads	 52.33	 47.48	 45.76	 23.14	

32	 threads	 53.96	 50.25	 32.62	 22.62	

64	 threads	 52.23	 49.54	 20.25	 13.07	

Ø  Intel’s MKL Library has been advertised
to have its functions optimized (i.e.,
DGEMM = 833 GFLOPS/s); therefore, this
test was recreated.

Ø  PLASMA is installed as a module within

 Beacon, and a separate environment was

 installed on the HOST for comparison data

 The routine is optimized through a tiled

 routine similar to the QUARK MM.

MIC Environment Variables:

Ø  OMP_NUM_THREADS:
-  In Beacon, each node has 4 MIC, each

with 60 cores (MAX VALUE = 240).

Ø  KMP_AFFINITY:
-  Compact: Sequential Queuing

-  Balanced: Threads allocated
 evenly among cores

Ø  The test was successful.
 Given the maximum
 number of threads and
 setting the core
 organization to balanced,
 the results matched.

Ø  Formula for GFLOPS/s:

Ø  Single Precision Cholesky

Factorization was tested on different

modes of execution.

Ø  MAX GFLOPS/sec was achieved at

~745 within the MIC.

Ø  Given the MIC environment variables,

a stress test was implemented to see

what were the ideal conditions for

getting a similar performance output.

Ø  Best overall performance was

attained from using 240 threads and

organizing in a compact manner.

CODE GENERATING DAG&CODE USING QUARK

void CORE_dgemm_quark(Quark *quark); //body omitted
void QUARK_CORE_dgemm(Quark *quark, Quark_Task_Flags *task_flags, PLASMA_enum
transA, PLASMA_enum transB,int m, int n, int k, int nb,double alpha, const double *A, int
lda,const double *B, int ldb,double beta, double *C, int ldc); //body omitted
……
 if((j>k)&&(i>j)) //dgemm type:(i,j,k),wherei>j>k*
 {
 Quark_Task_Flags tflags=Quark_Task_Flags_Initializer; //initailize the task
 QUARK_Task_Flag_Set(&tflags,TASK_PRIORITY,1); //set task attributes like priority

QUARK_CORE_dgemm(quark,&tflags,CblasNoTrans,CblasTrans,NB,NB,NB,NB,-1.0,&A2(0,0,
i,k),NB,&A2(0,0,j,k),NB,1.0,&A2(0,0,i,j),NB); // pass the arguments ,where data dependencies
are implied
 continue; }

A11 A12

A21 A22

L11

L21 L22

struct Label{long I;long J;long K;};
struct List{long node;label Node;char type;label in[3];label out[n-1];};
…
 if((j>k)&&(i>j)) //dgemm type:(i,j,k),wherei>j>k
 {
 list[count].Node=assignlabel(i,j,k); list[count].node=(i+1+j*n)+k*n*n; list[count].type='M';
 fprintf(fp,"%ld[label=\"(%ld,%ld,%ld)|GEMM\",color=forestgreen];\n",list[count].node,i,j,k);
 //assign node atrributes like label,color and so on
 for(q=0;q<3;q++)//Traverse the in-nodes and specify the data dependencies by edges
 {
 if (!((list[count].in[q].I==-1)||(list[count].in[q].J==-1)||(list[count].in[q].K==-1)))
 fprintf(fp,"%ld- >%ld;",(list[count].in[q].I+1+list[count].in[q]. J*n+list[count].in[q].K*n*n),
list[count].node); }
 fprintf(fp,"{rank=same;depth%ld %ld}\n",(3*k+3),list[count].node); //mark the depth
 ……
 }

	 	 NB=100	 NB=250	 NB=500	 NB=1000	

4	 threads	 1.00	 1.39	 1.50	 1.63	

8	 threads	 1.70	 2.16	 2.22	 2.22	

16	 threads	 3.03	 3.70	 3.54	 3.36	

32	 threads	 5.52	 6.48	 5.78	 4.94	

64	 threads	 9.97	 11.38	 9.49	 6.68	

