
Modeling Chemical Transport with Spectral Element Method

Cynthia Chan and Sam Loomis

August 8, 2014

Abstract
Climate and chemical transport modeling on a globe requires the use of unstructured grids, as well

as conservation of mass and energy for a stable and accurate simulation. Chemical transport is often
simulated using the finite volume method (FVM), which is explicitly conservative. However, the CESM
and HOMME equations are formulated in the spectral element method (SEM), which is a variant of
continuous Galerkin methods. Due to the interplay between chemical pollution and climate behavior, it
is desirable for our formulation of both climate and chemical transport to be based on the same method.
We tested the SEM for chemical transport models through both a serial and a parallel code. We found
that it accurately and efficiently models chemical transport, though more in-depth comparison testing is
necessary in future research.

Project Overview
The Finite Element Method (FEM) is a popular method for solving differential equations be dividing
the domain into small regions and approximating function values on those elements separately. Until
recently, it has not been believed to be locally conservative. Chemical transports are typically done using
the Finite Volume Method (FVM), which is explicitly locally conservative. However, climate models such
as CESM and the HOMME equations use the FEM to simulate meteorological phenomena on the globe.
To allow for a more complete model which includes atmospheric interactions with chemicals, it is desirable
to also use the same method for both climate and chemical transport.

Mark Taylor [2] has shown relatively recently that the Spectral Element Method, a type of FEM, is
explicitly locally conservative. It is also simpler to solve than most FEM problems, because the mass
matrix is diagonal and easy to invert.

Our goal is to test the advantage of using SEM to model chemical transport in the form of the
equation:

∂u(α)

∂t
= D(α)∇2u(α) − ~v · ~∇u(α) +R(α) (u, ~x, t)

where u(α) represent various chemical species, indexed by α. D(α) is the diffusion coefficient, ~v
the wind velocity and R(α) represents the production rate of the species due to chemical reactions or
manmade sources. We want to compare the efficiency and accuracy of the SEM to the FVM on these
sorts of problems.

The ultimate goal is to integrate SEM chemical transport models with CESM. Our plan is to take
two simultaneous paths, writing a serial code to test the 1D model and a parallel code to generalize to
higher dimensions.

Part I

Serial code
THE MODEL
Based on the chemical equation on two species Cl2 and Cl,

Cl2 
 Cl + Cl

1



we can construct a differential equation on u1 = [Cl2] and u2 = [Cl].

∂[Cl2]
∂t

= d1
∂2[Cl2]

∂x2 − 0.001[Cl2] + 0.05[Cl]2

∂[Cl]
∂t

= d2
∂2[Cl]

∂x2 + 0.002[Cl2]− 0.1[Cl]2

Generalize it as an 1-dimensional time-dependent differential equation, which is exactly the equation
that will be used to test the serial code:

∂u(α)

∂t
= d(α)

∂2u(α)

∂x2
+R(α) (u)

(1) u(α) represent various chemical species, indexed by α.

(2) d(α) is the diffusion coefficient.

(3) R(α) represents the production rate of the species due to chemical reactions or manmade sources. In
this chemical equation, R(α) = k1(α)u1 + k2(α)u

2
2.

Basically, the model is formulated as a continuous Galerkin polynomial-based sepectral finite-element
method. An important key of formulating this model is that using Gauss-Lobatto quadrature to ap-
proximate integration. When combined with a nodal basis that interpolates the quadrature nodes, one
obtains a diagonal mass matrix.

More detailed information of using these methods in the serial code is as following:

0.1 discrete spaces for the SEM
Let x denotes the coordinates of the points in the domain [a, b]. Decompose the domain Ω into M
elements [a = a0, b0], [a1, b0], ..., [aM−1, bM−1 = b]. Denote the m-th element [am, bm] by Ωm, and each
element can be mapped to a reference interval [−1, 1]. Let r denotes the coordinates in the reference
interval, then we can denote the map by

x = x(r,m) (1)
, where m = 0, 1, 2, ...,M − 1 denotes the m-th element.
Of course, if the domain is decomposed evenly into M elements, the mapping function of each element
will be the same as

x(r,m) =
b− a
2M

(r + 1) +
b− a
M

m (2)

0.2 construct the basis functions
0.2.1 Gauss-Lobatto Quadrature

By Gaussian-Lobbato quadrature rule with 4 points, the nodal points are obtained as {−1,− 1√
5
, 1√

5
, 1},

denoted by {ξ0, ξ1, ξ2, ξ3}. And the corresponding weights of the points are { 1
6
, 5

6
, 5

6
, 1

6
}, denoted by

w0, w1, w2, w3.

These nodal points are not only used to approximate the integration, but also to construct the basis
functions.

0.2.2 Basis Functions

On the reference interval [−1, 1], construct the basis functions {φ0(r), φ1(r), φ2(r), φ3(r)} as Lagrange
polynomials that interpolate the 1D degree-3 Gauss-Lobatto nodes {ξ0, ξ1, ξ2, ξ3} mentioned above, such
that

φi(r) =
∏
j 6=i

x− ξj
ξi − ξj

(3)

φi(ξj) =

{
1 i = j
0 i 6= j

(4)

2



0.2.3 Spanning Basis Functions

By mapping the basis functions from the reference domain to each element using the mapping func-
tion(1), we obtain a set of basis functions {φi(x(r,m)) : i = 0, 1, 2, 3 and m = 0, 1, ...,M − 1} on the
domain [a, b].
Then we cam approximate the value of uα(x) by linear combination of the polynomial basis functions on
[a, b].

ua(x) = ua(x(r,m)) =

3∑
i=0

uα(x(ξi,m))φi(x(r,m)) (5)

0.3 Formulate the Differential Equation
0.3.1 Weak Form

By following 1D continuous Galerkin Method and using the basis function mentioned above, we can
formulate the differential equation as the following steps.∫

Ω

v
∂uα
∂t

dx =

∫
Ω

dαv
∂2uα
∂x2

dx+

∫
Ω

vRα(u) dx (6)∫
Ω

v
∂uα
∂t

dx = −
∫

Ω

dα
∂v

∂x

∂uα
∂x

dx+

∮
∂Ω

dαv
∂uα
∂x

dx+

∫
Ω

vRα(u) dx (7)

∑
m

∫
Ωm

v
∂uα
∂t

dx = −
∑
m

∫
Ωm

dα
∂v

∂x

∂uα
∂x

dx+

∮
∂Ω

dαv
∂uα
∂x

dx+
∑
m

∫
Ωm

vRα(u) dx (8)

(1)m = 0, 1, ...,M − 1 denote the order of each element.
(2)Ωm = Im = [am, bm] is the domain of m-th element.
(3)v is a continuous test function on the domain.

0.3.2 Bilinear Form

By mapping each element to the reference domain, the following equation is obtained.

∑
m

∫ 1

−1

v
∂uα
∂t

[det]m dr = −dα
∑
m

∫ 1

−1

∂v

∂r

∂uα
∂r

1

[det]m
dr+dα

∮
∂Ω

v
∂uα
∂x

dx+
∑
m

∫ 1

−1

vRα(u)[det]m dr (9)

where [det]m = ∂x(r,m)
∂r

.

Firstly, approximate the function ua(x) as the equation(4).

ua(x) = ua(x(r,m)) =

3∑
i=0

uα(x(ξi,m))φi(x(r,m))

Secondly, take the test function v as each basis function.

v = φi∗(x(r,m∗)) (10)

where i∗ = 0, 1, 2, 3 and m∗ varies from 0 to M − 1.

Then use Guass-Lobbato quadrature to approximate the integration. That is to say, for a function
f(x), approximate the integration as follows.∫ 1

−1

f(x)dx =

3∑
j=0

wjf(ξj) (11)

3



As a result, we can obtain the following equation.

3∑
j=0

Mi∗j
∂ua(x(ξj ,m

∗))

∂t
= −dα

3∑
j=0

Di∗jua(x(ξj ,m
∗))+

3∑
j=0

Mi∗jRα(~u(x(ξj ,m
∗))+dα

∮
∂Ω

v
∂uα
∂x

dx (12)

[M ]
∂~ua(x(~ξ,m∗))

∂t
= −dα[D]~ua(x(~ξ,m∗)) + [M ]Rα(~u) + dα

∮
∂Ω

v
∂uα
∂x

dx (13)

where∮
∂Ω

v
∂uα
∂x

dx =


− ∂uα

∂r
(x(ξ0, 0)) = −

∑
j uα(x(ξj , 0))φ′j(ξ0) if v = φ0(r, 0);

∂uα
∂r

(x(ξ3,M − 1)) =
∑
j uα(x(ξj ,M − 1))φ′j(ξ3) if v = φ3(r,M − 1);

0 otherwise

(14)

and ~ua(x(~ξ,m)) = (ua(x(ξ0,m)), ua(x(ξ1,m)), ua(x(ξ2,m)), ua(x(ξ3,m)))T .

[M ] is considered as the Mass Matrix of them-th element. The entriesMij =
∫ 1

−1
φi(r)φj(r)[det]m dr,

where [det]m is the determinate dependent on the mapping from the reference domain to them-th element
[m − 1,m]. And in this case, [det]m = b−a

2M
for each element. Because we are using Gaussian-Lobatto

quadrature to approximate the integration, and at the same time, the basis function φi(r) are Lagrange
polynomials on the nodes ξi, we can conclude that the Mass Matrix is a diagonal matrix such that

Mij =

∫ 1

−1

φi(r)φj(r)[det]mdr =

{
[det]mwi i = j
0 i 6= j

(15)

(4) [D] is considered as the diffusion matrix. The entries are valued as the following equation.

Dij =

∫ 1

−1

φ′i(r)φ
′
j(r)

1

[det]m
dr (16)

Reference to the code

The quadrature points with its weights, element mass matrix and element diffusion matrix are all stored
in templs.h.

0.4 assembly
Construct the element equation(13) on each element m∗ = 0, 1, 2, ...,M −1, and then assemble them into
a global equation.

[GM ]
∂Uα
∂t

= −[GD]Ua + [GM ]Ra(~U) (17)

(1) Ua = (ua(ξ0, 0), ua(ξ1, 0), ua(ξ2, 0), ua(ξ0, 1), ua(ξ1, 1), ua(ξ2, 1), ... , ua(ξ0,M − 1), ua(ξ1,M −
1), ua(ξ2,M − 1), ua(ξ3,M − 1))T . ~U = (U0, U1, ..., Uspi−1). Note that: ua(ξ3,m) = ua(ξ0,m+ 1).

(2) [GM ] is the global Mass Matrix assembled by the element Mass Matrix [M ], while [GD] is the
global Diffusion Matrix assembled by the element Diffussion Matrix [D] combined with the diffussion
coefficient dα and the integration on boundary.

void GlobalMass (double ∗diaGM, int M, double det ) ;
/∗ output : the Globa l Mass Matrix f o r each s p e c i e s ∗/

Algorithm of assembling the Global Mass Matrix:

Initialize [DiaGM]=0.

Do the following for m=0:(M-1)

4



1. Obtain diagonal entries [DiaEM] of the m-th element by the function ElementMass();

2. do for i=0:(NNODL-1)

DiaGM[i+(NNODL-1)*m]=DiaEM[i+(NNODL-1)*m]+DiaEM[i];

Then the diagonal entries of the Global Mass Matrix is obtained as [DiaGM].

void Globa lD i f f u s i on (double∗∗ GM, int s , int element , double det , int s p i ) ;
/∗ inpu t : the order o f the s p e c i e s ∗/
/∗ outpur : d i f f u s s i o n Globa l Matrix f o r the s−th s p e c i e s ∗/

Algorithm of assembling the Global Diffusion Matrix:

1. Apply the same algorithm mentioned above as assembling the Global Mass Matrix to assemble
[D] into a Global Diffusion Matrix [GD];

2. Do with the integration on the boundary referring to equation(13):

do the following for i=0:(NNODL-1) :

GD[0][i]=GD[0][i]+φ′i(ξ0);

GD[n][i]=GD[n][i]−φ′i(ξ3); where n=(NNODL-1)*M+1|

3. Multiply each entry of the Global Diffusion Matrix with the diffusion coefficient dα.

As a result, the Global Diffusion Matrix [GD] is obtained, which is dependent on the order of the
species.

Multiply the equation(17) with the matrix [GM ]−1 from the left. The following equation is obtained.

∂Uα
∂t

= −[GM ]−1[GD]Ua +Rα(~U) (18)

void ivsM_D(double∗∗ ivsMD , int s , int M, double det , int s p i ) ;
/∗ inpu t : the order o f the s p e c i e s ∗/
/∗ output : " i n v e r s e o f Globa l Mass Matrix " mu l t i p l y the Globa l d i f f u s i o n Matrix ∗/

i.e. output the matrix [GM ]−1[GD] for the s-th species

0.5 Euler Backward Method
To solve the value of Ua at time T = hN . We use Euler Backward Method on the equation(11) with
time step h.

U (n+1)
a = U (n)

a − h[GM ]−1[GD]U (n+1)
a + hRα(~U (n+1)) (19)

1. For n=0, input the initial value U (0)
a .

2. Solve equation(19) and update U (n+1)
a for N many times. Then we can obtain the value of Ua at

time T = hN .

0.6 Newton Method
As the equation(19) is nonlinear because of the term Rα(~U), we need to apply Newton Method the solve
equation(18). A function ~F is construct for Newton Method.

~F =


F1(~x)
F2(~x)
...
FSPI(~x)

 = 0 (20)

5



where
Fα(~x) = xα − Uα + h([GM ]−1[GD]xα −Rα(~x)) (21)

In Newton Method, we solve the equation(20) instead of solving the equation(19) in Euler Method.
To solve the equation(20), we need to construct the Jacobian Matrix of the function ~F .

J =
∂ ~F

∂~x
=


∂F1
∂x1

∂F1
∂x2

... ∂F1
∂xSPI

∂F2
∂x1

∂F2
∂x2

... ∂F2
∂xSPI

... ... ...
∂FSPI
∂x1

∂FSPI
∂x2

... ∂FSPI
∂xSPI

 (22)

By equation(21), it is easy to obtain the partial derivative.

∂Fj
∂xi

=

{
I + h[GM ]−1[GD]− h ∂Rj(~x)

∂xi
I i = j

−h ∂Rj(~x)

∂xi
I i 6= j

(23)

Note that: if i 6= j, then ∂Fj
∂xi

will be a diagonal block.

While applying the Newton Method, the following Linear Algebra Equation need to be solved.

J(∆~x) = −F (~x∗) (24)

And the structure of the Jacobian Matrix J is as the following graph,

which is not banded enough. Hence, it is essential to refine the matrix. To achieve this, we need to
rearrange the rows and columns in the matrix.

In equation(24), ~x∗ = ~U = (U0, U1, ..., Uspi−1)T , where Ua = (ua(ξ0, 0), ua(ξ1, 0), ua(ξ2, 0), ua(ξ0, 1), ua(ξ1, 1), ua(ξ2, 1), ... , ua(ξ0,M−
1), ua(ξ1,M − 1), ua(ξ2,M − 1), ua(ξ3,M − 1))T . To make the matrix banded, rearrange the elements in
~x∗ to obtain a new vector ~x′∗ such that:

~x′∗ = (~u(ξ0, 0), ~u(ξ1, 0), ~u(ξ2, 0), ~u(ξ0, 1), ~u(ξ1, 1), ~u(ξ2, 1), ... , ~u(ξ0,M−1), ~u(ξ1,M−1), ~u(ξ2,M−1), ~u(ξ3,M−1))T

(25)
where

~u(ξi,m) = (u0(ξi,m), u1(ξi,m), ..., uspi−1(ξi,m))T (26)

For convenience, denote the RHS of equation(25) by
−→
U ′. Then ~x′∗ =

−→
U ′.

There is a permutation π on {0, 1, 2, ..., N − 1}, which maps the elements in ~x∗ to the elements in
~x′∗, where N = spi ∗ ((NNODL − 1) ∗M + 1). Using the same permutation π, we can rearrange the
rows and columns of the matrix J to obtain a new matrix J ′. And the structure of the refined matrix J ′

should be as the following graph:

6



As the Jacobian Matrix can be huge, it is a good property that J ′ is banded. Hence, we can apply
lapack to solve the linear equation.

Usually there should be a boundary condition while solving the differential equation. I am going to
apply the boundary condition to the Jacobian Matrix by making ∆~x equals to zero at the boundary
points.

void JacobF (double∗∗ J , double ∗u , double h , int M, double det , int s p i ) ;
/∗ inpu t : an array u ∗/
/∗ output : the r e f i n e d Jacobian Matrix J ’ a t u ∗/

Algorithm of constructing the refined Jacobian Matrix:

SET: N=spi*((NNODL-1)*M+1); n=(NNODL-1)*M+1;

1. Initialize J[i][j]=0;

2. Referring to equation(23), input the diffusion part I + h[GM ]−1[GD] to J .

(1) do i=0:(N-1), J[i][i]=1;

(2) do s=0:(spi-1), i=0:(n-1), j=0:(n-1),

J[s+i*spi][s+j*spi]=J[s+i*spi][s+j*spi]+h([GM ]−1[GD][i][j]).

Note that: the matrix [GM ]−1[GD] is dependent on the order of the species s.

3. Referring to equation(23), input the source part −h ∂Rj(~x)

∂xi
I to J.

4. Add the boundary condition.

do s=0:(spi-1)

(1) do j=0:(N-1)

J[s][j]=0; J[N-(s+1)][j]=0;

(2) J[s][s]=1; J[N-(s+1)][N-(s+1)]=1;

As J ′ is a banded matrix, we can call LAPACK solver to solve the equation

J ′(∆~x′) = −F (~x′∗) (27)

Now, the equation(19) at n=k can be solved applying typical Newton Method Algorithm :

1. Set the tolerance of error to be tolerance=ε.

7



2. Initialize ~x′∗ =
−→
U ′(n).

3. Solve ∆~x′ in the equation(27).

4. Update ~x′∗: ~x′∗ = ~x′∗ + ∆~x′.

5. If ‖∆~x′‖ > ε, go back to step 3.

6. Obtian the result
−→
U ′(n+1) = ~x′∗ with tolerance=ε.

void NEWTON(double ∗u_0 , double ∗u_1 , double h , double to l e rance , int M, double det , int s p i ) ;
/∗ inpu t : an array u_0 ∗/
/∗ output : the s o l u t i o n u_1 fo r equat ion (19) ∗/

Note: the array we use in Newton Method the a refined vector ~U ′, but in equation(19) referring to
Euler Method, the vector is the unrefined one ~U . In the serial code, of course we only use the refined
vector ~U ′.

0.7 Solution
By all the method metioned above, we can solve the value of uα(ξi,m) for α = 0, 1, ..., spi−1, i = 0, 1, 2, 3
and m = 0, 1, 2, ...,M − 1 at time T = hN . Apply these coefficient to the basis functions, then we can
obtain the approximation function on the domain [0,M ].

f(xα) = f(xα(r,m)) =

3∑
j=0

uα(ξj ,m)φj(r) (28)

0.8 Simple example
Here is a simple example for testing. The following graph shows the initial value of 2 species on the
domain [0, 6] at time T=0.

Let the number of elements M=30, tolerance=0.000001 for Newton Method and do 100 steps in the
Euler Method. The following graph shows the quantity of those 2 species at time T=2.0, 4.0, 6.0, 8.0.

8



0.9 Testing of accuracy
To know whether the code is giving us a basically correct answer, a good way is to compare the result
given by the code with the analytical result.

Differential Equation: ∂u
∂t

= 0.1 ∂
2u
∂x2 + 0.1u ;

Initial Value: u(x, 0) = sin(πx) at T = 0 ;
Analytical Solution: u(x, t) = e0.1−0.1π2T sin(πx) ;

On the basis of above information, the comparison graph is shown as follows.

0.10 Convergence
By varying the number of element from 13 to 70, the convergence process is show as the following graph.
Of course, it is a very rough way of testing the convergence by graphs. There should be further explo-
ration on this part.

9



Part II

Parallel code
This code is a set of FORTRAN modules designed to help solve and integrate a general multi-dimensional
SEM problem.

The code will consist of two main pieces: HESIOD and HOMER. HESIOD is a module which allows
the user to package the mesh, fields and equation data. HOMER is the module with subroutines that
will actually evolve the fields in time, using explicit or implicit methods, and with options to use splitting
and different types of Newton’s methods.

0.11 HESIOD
HESIOD contains four types: mesh, fields, fn_ptr, and equation.

mesh: Requires input of integer variables num_elem, num_pt, num_lyr, deg, and num_dim, which
correspond to the number of elements, number of nodal points, number of layers, degree of polynomial
interpolation, and the dimension of the embedding space, respectively. From these we can also calculate
num_quad = (deg + 1)num_dim, which is the total number of quadrature points in the reference cube
[−1, 1]num_dim.

Also requires the arrays structure (num_elem, num_quad), quad (deg + 1), weights (deg + 1), and
coords (num_pt, num_dim), which represent the structure of the matrix (assigning each quadrature point
in each element to a nodal point), the quadrature points on [−1, 1], the weights for these points, and the
coordinates of each nodal point in the embedded space. From these a number of arrays are calculated,
the most important being: diffs (num_dim, num_quad, num_quad), which allows for the calculation
of derivatives w.r.t. the reference cube; grad (num_elem, num_dim, num_quad, num_quad), which al-
lows for calculation of derivatives w.r.t. the embedding space; and jac (num_elem, num_quad), which
calculates the Jacobian determinant for each element.

fields: Requires as input: the integer num_fields, which corresponds to the total number of fields
(counting different components of a vector/tensor field separately); type (mesh) base_mesh, which rep-
resents the mesh on which the fields are defined; and array values (num_fields, base_mesh%num_pt),
which stores the values of the field at each nodal point. Upon declaration, this must be set to the initial
values of the function.

We can switch between the nodal-point representation of the fields in values and a elemental-
quadrature-point representation elem_values (num_fields, base_mesh%num_elem, base_mesh%num_quad)
using the data in base_mesh%structure. This representation is redundant, containing the values at
boundary points twice, but it makes a convenient representation such that each sub-array elem_values (:, m, :)
can be passed on to the processor assigned to element m during the local evolution.

fields also contains a subroutine, projectElemValues, to perform the weighted sum required for
the local evolution method, turning a discontinuous elem_values representation into a continuous one,
where redundant points are made to agree by averaging them over the quadrature weights.

10



fn_ptr: Creates a general function format to represent the right-hand-side of the evolution equation.
The required format of these functions is

function f (dim, num_fields, num_quad, diff, grad, Jw, u, q, t) result (ans)
integer, intent(in) :: dim, num_fields, num_quad, q
real (kind (0.0d0)) , dimension (num_fields, num_quad) , intent (in) :: u

real (kind (0.0d0)) , dimension (num_dim, num_quad, num_quad) , intent (in) :: diff, grad
real (kind (0.0d0)) , dimension (num_quad) , intent (in) :: Jw

real (kind (0.0d0)) , dimension (num_quad) :: ans

real (kind (0.0d0)) , intent (in) :: t

end function

equation: Requires as input: num_dim, num_fields, and num_quad; num_split, the number of split
operators (an input of 0 means no splitting); the type (fn_ptr (num_dim, num_fields, num_quad))
array operators (num_fields, num_split) which stores the info for F (α) as a set of split operators; and
theta, which represents the implicit parameter θ used in implicit evolution.

0.12 HOMER
For what follows, we consider a general time-dependent first-order PDE over the fields u(α):

∂u(α)

∂t
= F (α) [u]

No code is written for HOMER yet, but the general routines that must take place are set out below.

Local versus global evolution.

The first step of the Spectral Element Method is to take the weak form of the equations by taking an
inner product: 〈

Φl
∂u(α)

∂t

〉
=
〈

ΦlF
(α) [u]

〉
〈

Φl
∂u(α)

∂t

〉
=

M∑
m=1

〈
Φl
∂u(α)

∂t

〉
Ωm

On a point interior to element m̄, with ~rl = ~r
(
~ξ~ı, m̄

)
this is〈

Φl
∂u(α)

∂t

〉
=

〈
φ~ı
∂u(α)

∂t

〉
Ωm̄

=
∑
~

∂u
(α)

m̄|~

∂t
φ~ı
(
~ξ~
)
w~Jm̄

(
~ξ~
)

=
∂u

(α)

m̄|~ı

∂t
w~ıJm̄

(
~ξ~ı
)

Meanwhile, we write 〈
ΦlF

(α) [u]
〉

=
〈

ΦlF
(α) [u]

〉
Ωm̄

= F
(α)

m̄|~ı

We expect that we can perform integration by parts on second derivatives in the calculation of this
term. Resulting boundary terms are zero because ~rl is interior to element m̄.

Now

∂u
(α)

m̄|~ı

∂t
=

F
(α)

m̄|~ı

w~ıJm̄
(
~ξ~ı
)

However, if ~rl = ~r
(
~ξ~ı, m̄

)
= ~r

(
~ξ~, n̄

)
with m̄ 6= n̄, then

〈
Φl
∂u(α)

∂t

〉
=

M∑
m=1

〈
Φl
∂u(α)

∂t

〉
Ωm

=

〈
Φl
∂u(α)

∂t

〉
Ωm̄

+

〈
Φl
∂u(α)

∂t

〉
Ωn̄

=
∂u

(α)

m̄|~ı

∂t
w~ıJm̄

(
~ξ~ı
)

+
∂u

(α)

n̄|~

∂t
w~Jn̄

(
~ξ~
)

〈Φl, F [u]〉 = 〈Φl, F [u]〉Ωm̄ + 〈Φl, F [u]〉Ωn̄ = F
(α)

m̄|~ı + F
(α)

n̄|~j

Between the two F terms, boundary flux terms cancel out.

11



The continuity requirement means

∂u
(α)

m̄|~ı

∂t
=
∂u

(α)

n̄|~

∂t
=
∂u

(α)
l

∂t
so

∂u
(α)
l

∂t
=

F
(α)

m̄|~ı + F
(α)

n̄|~j

w~ıJm̄
(
~ξ~ı
)

+ w~Jn̄
(
~ξ~
)

This is the global approach to evolving the fields. However, it requires having global knowledge of
the mesh, which requires large matrices to be passed on to the various processors. An equivalent but
computationally less expensive method is the local approach, which temporarily discards continuity and
sets

∂u
(α)

m̄|~ı

∂t
=

F
(α)

m̄|~ı

w~ıJm̄
,

∂u
(α)

n̄|~

∂t
=

F
(α)

n̄|~

w~Jn̄

In this case we discard boundary terms within each F term. Using these separate and not necessarilly
equal evolution terms, we calculate

u
(α)

m̄|~ı (t)→ u
(α)

m̄|~ı (?) , u
(α)

n̄|~ (t)→ u
(α)

n̄|~ (?)

using whatever evolution method we want. Each of these calculations can be done on a separate
processor, which only requires information about that individual element. The HOMER method for
this process is homer_integrate_elem, after the information about each element is sent from the root
processor with homer_init.

Matrices involved in the calculation may be dense and relatively small (compared to the global
calculation). These routines can then be performed with the help of packages such as LAPACK or
ScaLAPACK.

Since u
(α)

m̄|~ı (?) 6= u
(α)

n̄|~ (?), we must now perform a weighted sum to preserve continuity. To do this we
set

u
(α)

m̄|~ı (t+ ∆t) = u
(α)

n̄|~ı (t+ ∆t) =
w~ıJm̄

(
~ξ~ı
)
u

(α)

m̄|~ı (?) + w~Jn̄
(
~ξ~
)
u

(α)

n̄|~ (?)

w~ıJm̄
(
~ξ~ı
)

+ w~Jn̄
(
~ξ~
)

This is done once the processors return their data to the head processor, with subroutine homer_integrate_root.

Implicit versus explicit evolution

The evolution will be done either implicitly or explicitly. Generally the equation will be

u
(α)

m̄|~ı (?) = u
(α)

m̄|~ı (t) + ∆u
(α)

m̄|~ı

∆u
(α)

m̄|~ı =
∂u

(α)

m̄|~ı

∂t

[
u

(α)

m̄|~ı (t)
]

∆t · θ +
∂u

(α)

m̄|~ı

∂t

[
u

(α)

m̄|~ı (?)
]

∆t · (1− θ)

This can be solved by a Newton’s method, using

∆u
(α)

m̄|~ı (0) =
∂u

(α)

m̄|~ı

∂t

[
u

(α)

m̄|~ı (t)
]

∆t

∆u
(α)

m̄|~ı (n+ 1) = ∆u
(α)

m̄|~ı (n)− 1

∆t · (1− θ)
∑
J

[
J
[
∆u

(α)

m̄|~ı (n)
]]−1

IJ

∂u
(β)

m̄|~

∂t

[
∆u

(α)

m̄|~ı (n)
]

where the Jacobian matrix is

JIJ
[
∆u

(α)

m̄|~ı (n)
]

=
1

w~ıJm̄

∂F
(α)

m̄|~ı

∂u
(β)

m̄|~

[
u

(α)

m̄|~ı (t) + ∆u
(α)

m̄|~ı (n)
]

is a matrix indexed by the double indices I = (α,~ı) and J = (β,~). For a problem with, say, ten
fields u, three dimensions and a polynomial degree of 5, this matrix has dimensions

(
10 · 63

)
×
(
10 · 63

)
=

2160× 2160, or on the order of 106 entries, about 1 MB of data. Generally derivative terms will require

12



J(α,~ı)(α,~) 6= 0, and so J will at least have a block diagonal structure. This generates about 10 · 66 ≈ 105

nonzero terms. Furthermore, if field α interacts with field β, then J(α,~ı)(β,~ı) 6= 0. This generates
about 63 ≈ 102 terms per each interaction, which are negligible in counting terms unless the number of
interactions is on the order of 102 (all possible interactions), at which point total the number of nonzero
terms reaches nearer to 106 in order. Therefore, for a small number of interactions between fields, J can
be approximated as sparse, but for a large number of interactions, it is dense.

Therefore, we will require sparse matrices when there are a large number of fields or a high degree of
interpolation, but a low number of interactions between the chemicals. Otherwise, we can represent J as
a dense matrix.

θ is set through thetheta variable in equation. When θ = 0, the evolution is done through a simple
forward Euler’s method without any use of Newton’s method or the Jacobian. Currently, the code is
only designed to handle θ = 0.

Strang Splitting

It may be desired to use operator splitting; that is, writing the evolution as

∂u(α)

∂t
= F (α) [u] = F

(α)
1 [u] + F

(α)
2 [u]

For example, in our model, we can write F (α)
1 [u] = D∇2u(α) and F (α)

2 [u] = R(α) (u). Suppose that
we represent an evolution step with

u(α) (t+ ∆t) = exp
[
∆t · F (α) [·]

]
u(α) (t)

where exp is whatever method we use to evolve a step forward through ∆t. In our implicit Euler
integration, exp [·] is given by solving

exp [∆t · F [·]]u (t) = u (t) + F [u (t)] ∆t · θ + F [exp [F [·]]u (t)] ∆t · (1− θ)
Strang splitting means we evolve as [1]

u(α) (t+ ∆t) = exp

[
1

2
∆t · F (α)

1 [·]
]

exp
[
∆t · F (α)

2 [·]
]

exp

[
1

2
∆t · F (α)

1 [·]
]
u(α) (t)

which sacrifices some accuracy but is computationally less expensive. The option to use Strang
splitting can exercised through the equation type.

Currently, the code is NOT designed to handle Strang splitting.

0.13 Testing
The form of equations that will be used to test the parallel code is

∂ [A]

∂t
= D∇2 [A]− ~v · ~∇ [A]− k1 [A]2 + 2k2 [A2]

∂ [A2]

∂t
= D∇2 [A2]− ~v · ~∇ [A2] +

1

2
k1 [A]2 − k2 [A2]

modeled after a monatomic to diatomic chemical reaction, 2A � A2, occuring with diffusion and
convection. This model is tested in both one and two dimensions, and is used to determine convergence
as well as scalability results.

One-dimensional convergence testing

The particular model was chosen:

∂u (x, t)

∂t
= 0.1

∂2u (x, t)

∂x2
− 1.0u (x, t) , x ∈ [0, 1] , t ∈ [0, 1]

u (x, 0) = 1 + cos (πx)

with theoretical solution

u (x, t) = e−1.0t
(

1 + e−0.1π2t cos (πx)
)

13



The code set to solve this problem with 5, 10, 20 and 40 processors in order to study the order of
convergence. The results at t = 1, on the whole domain and on a small interval near the origin, are
shown in Figure 1.

Figure 1: The graph of convergence for 0 < x < 1 and 0 < x < 0.025

The particular values at x = 0 for these tests can be numerically examined to calculate the order
of convergence. It is seen clearly that the difference between each consecutive resolution decreases by
one-fourth for every doubling in the number of elements. This indicates 2nd-order convergence, with an

14



error of O
(
∆x2

)
.

Two-dimensional convection, diffusion and reaction testing

The equations (x) and (y) were chosen as the two-dimensional model, with D = 0.00625, k2 = 2.0,
k1 = 1.0, and ~v = (0.5, 0). The initial conditions were chosen as

[A2] (x, y, 0) =

{
1
4

(1− cos (4πx)) (1− cos (4πy)) 0 < x < 1
2
, 0 < y < 1

2

0 otherwise

[A] (x, y, 0) =

{
1
4

(1− cos (4πx)) (1− cos (4πy)) 0 < x < 1
2
, 1

2
< y < 1

0 otherwise

The code was run on a grid of 5× 5 = 20 elements. The results are shown in Figure 2. As the above
equations being tested are nonlinear, we do not have a theoretical solution to compare with. However,
we can examine some quantitative and qualitative features of these results.

Figure 2: The results of testing in two dimensions, at t = 0 and t = 1. Graphs on the left are of [A2] and on
the right are of [A].

It is clear that the peak of the initial distributions move in the direction of the convection current;
in fact, they move from x = 0.25 at t = 0 to x = 0.75 at t = 1, which matches the theoretical vx = 0.5.
We see that the values of the function are being averaged out over the domain, as expected in diffusion,
and we also note that each chemical is being produced in the domain of the other chemical due to the
reactions. Particularly, we note that A is produced much more quickly than A2, whichis in concordance
with the fact that k2 > k1.

One odd behavior of this solution is the appearance of small peaks around x = 0.25 at t = 1, which
seem to have "moved in" from the x < 0 region. This is likely due to the lack of boundary conditions on
the problem.

15



The simulation was also run far beyond t = 1 to t = 100 (now with ~v = 0) when the system has
approached equilibrium. The equilibrium values are compared to the equilibrium constant

K ≡ 2k1

k2
=

[A2]

[A]2

In our theoretical example, this equilibrium should be set to K = 1.0. The results from the code give
an agreeing value of K = 1.0 at each point within an error of about 10−10 %.

Two-dimensional scalability testing

A similar example to the above was run with a grid of 32 × 32 = 1024 elements, run from t = 0 to
t = 0.01 with a timestep of ∆t = 0.0001. This code was run on Darter by dividing the elements between
2n processors for n = 1, 2, . . . , 10. The time it took to run each simulation is plotted in a log-log graph
in Figure 3.

Figure 3: The scalability graph for 1024 elements. The x-axis gives the number of processors as 2x; the y
axis gives the run time as t = 2y s.

When the number of processors is less than the number of elements, the code displays high scala-
bility, indicating a clear inverse relationship between time and processor number. However, this inverse
relationship appears to break down at 256 processors, after which 512 processors has the smallest time
while 1024 processors actually has a longer time.

This is likely due to the fact that the algorithm is not entirely parallel, due to the need for boundary
communication. All boundary averages are calculated on a single root processor. In the future the code
can be adapted to perform boundary sums only on the necessary elemental processors, which should
improve the scalability for higher numbers of processors.

It should also be noted that implementing operator splitting should improve the overall efficiency of
the code on all processors; the degree to which it improves remains to be seen.

16



0.14 Conclusions and Future Research
It is clear that the parallel code can successfully solve the above-given chemical transport problems, in
both one and two dimensions. There are many more ways in which it can be tested, however. The code
can be compared with the efficiency of Finite Volume codes in an equal-accuracy test, and it may be
tested on a wider range of models (more chemicals, higher-order reactions, and higher dimensions). As
the code is intended to solve general PDEs with the SEM, it will be necessary to also test the code on a
wider variety of differential equations.

There are also ways in which the code can be further improved, which include: implementing implicit
Euler methods and Strang splitting; paralellizing the boundary averages in the integration process; and
allowing the user to define boundary conditions on the mesh and fields.

References
[1] Marlis Hochbruck and Alexander Ostermann. Time integration: splitting methods. Slideshow Pre-

sentation, 2005.

[2] Mark A. Taylor and AimÃ c© Fournier. A compatible and conservative spectral element method on
unstructured grids. Journal of Computational Physics, 229(17):5879 – 5895, 2010.

17


