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Overview
● Background
● Spectral Element Method

○ Basis Function
○ Weak Form
○ Quadrature
○ Global v.s Local Formulation
○ Euler and Newton Methods
○ Continuous Galerkin v.s Discontinuous Galerkin

●  Coding
○ Serial Code
○ Parallel Code



● CESM (Community Earth System Model) : 

Aimed at understanding and predicting the climate system.

● Climate and chemical transport models:

Require the use of unstructured grids and conservation of mass and energy. 

Therefore, the model is written using the FVM(Finite Volume Method), which 

is explicitly conservative.

● CESM and the HOMME equations:

Formulated through the FEM(Finite Element Method) because of its use on 

unstructured grids. This is convenient when solving the equations on a globe.

Background

● Spectral Element Method:

Mark Taylor [1] has shown that the Spectral Element Method, a type of FEM, is explicitly locally conservative, 

as well as having other ideal properties, such as a diagonal mass matrix.

● Object:

We want to show that chemical transport problems can be accurately modeled with the SEM, so that they 

may be integrated with the HOMME equations.



Basis Functions
● A type of continuous-Galerkin Finite Element Method with explicit local and global conservation, 

and a diagonal mass matrix
● A typical continuous-Galerkin formulation of a problem starts by replacing the fields u with a 

piecewise polynomial function.

Spectral Element Method

● Because of this, u can be approximately 
represented as a sum of basis functions:

● Because of this, we can also write the 
first derivatives of u as



Weak Form
● As a result of the polynomial approximation, u is not second-differentiable.
● However, differential equation with a second derivative can be transformed into a differential-

integral equation through integration by parts.
● Integrate the equation with a test function v. e.g.:

● By inserting the polynomial approximation, turn the integro-differential problem into a linear 
algebra problem:

● The integrals are calculated using a Gaussian quadrature.

Spectral Element Method



Gaussian Quadrature
● To approximate an integral by quadrature, we write it as a weighted sum over discrete points:

● In the Spectral Element Method, we set the nodal points used for polynomial interpolation equal to the 
quadrature points. This means the mass matrix can be simplified as:

● This greatly simplifies the linear algebra involved.
● The Gauss-Lobatto quadrature (which SEM uses) is exact for polynomials of degree d <= 2n-1, where n 

is the number of quadrature points. This means many vector-calculus identities are preserved in this 
formulation, which leads to local and global conservation.

Spectral Element Method



Global vs. Local Formulation
● Due to the piecewise approximation, elements are mostly 

independent of each other.
● The only interdependence between elements occurs at the 

boundaries, where elements share nodal points.
● When integrating, one can solve the matrices globally,  or one 

can distribute local element data to different processors and 
integrate each element in parallel.

● This gives the exact same result as the global method for 
interior points, but points on elemental boundaries may 
disagree between elements. This discontinuity is resolved by a 
weighted average.

● After the parallel integration + weighted sum, the local method 
and global method are mathematically equivalent.
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Euler and Newton methods
● Once the time derivative is known, we can calculate the next time step through the Forward Euler 

Method:

● This method can have instabilities, however, which requires a CFL factor to control it (typically has the 
form                               for some c and n.

● One way to remove these instabilities is to use an implicit Euler method: 

● This is typically a nonlinear equation that must be solved via iterative Newton methods and the 
Jacobian matrix J:

Spectral Element Method



Spectral Element Method
Euler and Newton methods (cont.)
● The Jacobian matrix will have dimensions (N

F
 x (d + 1)dim)2, where

N
F
 = number of fields, dim = dimension, and d = interpolation degree.

● For a problem with 10 fields, polynomial degree 4 and 3 dimensions, 

this is approximately (10 x 53)2 ≈ 1.5 x 106 components. If each number is

stored in 16 bytes (double precision) this comes to approximately 25 MB.

● Each compute node in BEACON has 256 GB of memory and 16 cores,

which comes to 16 GB per core. Problems with a large number of fields or

high interpolation degree can strain this memory restriction.

● Most problems only have a few chemical interactions, which gives the Jacobian a sparse or banded 
structure that can be split among processors using TRILINOS.



Continuous vs. Discontinuous Galerkin Method

Continuous Discontinuous

Code Finished Working on

Finite Element Method



● Serial Code (C):

○

○
○ 1-dimensional multiple-species 

diffusion equation with source term
○ Method :

■ Spectral Element Method
■ Guassian-Lobatto Quadrature
■ Euler Backward Method and 

Newton Method 

Serial

Parallel

● Parallel Code (Fortran):

○ Fortran modules designed to solve multi-
dimensional PDEs with Spectral Element Method

○ module HESIOD:
■ Stores data about mesh, fields and equation

○ module HOMER:
■ Performs time-integration on each element 

separately (parallel)
■ Resolves boundary discontinuities via 

weighted sum (serial)
○ Currently tested on:

■ 1- and 2-dimensional multiple-species 
diffusion equations with convection and 
source terms

■ Forward Euler Method, no splitting

Coding



●  Testing Example：
○ chemical equation:
○  

○ 2-species math model:
○  
○  

 

Serial

Parallel

domain : [ 0, 6 ]

● Initial Condition : 
○ value of [Cl2] and [Cl] 

[Cl2] = 2-2cos(PI*x)
[Cl] = sin(PI*x)

Coding



Serial

Parallel

● Solution run by the serial code

T = 2.0 T = 4.0

T = 6.0 T = 8.0

T =0

● Initial Condition ● Compare with FVM

T = 4.0

SEM

FVM

FVM : solution given by 
Jian Sun(UTK)

Coding



Program Solution     VS    Theoretical Solution

Serial

Parallel

Compare the solution at T = 10.0

● Differential Equation : ● Initial Condition : ● Theoretical Solution : 

at T = 0

Coding



Program Solution     VS    Theoretical Solution

Serial

Parallel

Compare the solution at T = 10.0

Coding



Serial

Parallel

Convergence of the Solution
Fix the domain to be [0, 20]  and Vary the number of  elements from 13 to 70 

Coding



Convergence testing
Equation:

Theoretical Solution:

Serial

Parallel

Coding



Serial

Parallel

2D test case: 

● Tested on 5 x 5 (=25) elemental grid

● dx = 0.2, dt = 0.0001

Coding



Serial

Parallel

2D test case: 
t = 0

A

A2

t = 0.002 t = 0.004

Coding



Serial

Parallel

Scalability
Tested previous example with 32 x 32 (=1024) element grid on 1, 2, 4, 8, 
… , 1024 processors. 

● Minimum time at 512 processors
● Can be improved by parallelizing

the weighted average process

● Computing time may be improved

                    by adding operator

                     splitting

Coding



● Serial Code:
○ Finish the current discontinuous 

Galerkin serial code and test the 
accuracy of this code

○ Write a discontinuous Galerkin code 
based on Dr.Chung’s(CUHK) algorithm

○ Combine the code of the discontinuous 
serial code with the parallel code with 
Trilinos

○ Hopefully, a discontinuous parallel code 
would be obtained 

Next Steps

Serial

Parallel

● Parallel Code:
○ Parellelize the averaging process on the 

boundaries by sending boundary data only 
to neighbors

○ Implement option for operator splitting to 
improve computational efficiency

○ Implement options for Implicit Euler and 
Newton methods

○ Allow user to set more general boundary 
conditions: Dirichlet, Neumann, Robin and 
Periodic

○ Interface with Trilinos to allow for higher 
dimensional problems and a large number 
of fields
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