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Backarounc

CESM (Community Earth System Model) :
Aimed at understanding and predicting the climate system.
Climate and chemical transport models:

Require the use of unstructured grids and conservation of mass and energy.
Therefore, the model is written using the FVM(Finite Volume Method), which
is explicitly conservative.

CESM and the HOMME equations:

Formulated through the FEM(Finite Element Method) because of its use on
unstructured grids. This is convenient when solving the equations on a globe.

Spectral Element Method:

Mark Taylor [1] has shown that the Spectral Element Method, a type of FEM, is explicitly locally conservative,
as well as having other ideal properties, such as a diagonal mass matrix.

Object:

We want to show that chemical transport problems can be accurately modeled with the SEM, so that they
may be integrated with the HOMME equations.



Spectral Element Method

Basis Functions

e A type of continuous-Galerkin Finite Element Method with explicit local and global conservation,
and a diagonal mass matrix

e A typical continuous-Galerkin formulation of a problem starts by replacing the fields u with a
piecewise polynomial function. -

e Because of this, u can be approximately
represented as a sum of basis functions:

u(R) ~ 3 u(E¢r(R)

e Because of this, we can also write the
first derivatives of u as

VuR) ~ 3 u(E)Vge(x)




Spectral Element Method

Weak Form

e Asaresult of the polynomial approximation, u is not second-differentiable.

e However, differential equation with a second derivative can be transformed into a differential-
integral equation through integration by parts.

e Integrate the equation with a test function v. e.g.:

ou

— =Vu — J v—dx fvvzudx —>J v— dx f vVu-d_b—J Vv - Vudx
ot Q 30 Q

e By inserting the polynomlal approximation, turn the 1ntegro -differential problem into a linear
algebra problem:

f ¢Ta—udx =B.C. - J Vo7 Vudx — >
o ot o :

aU(ff) J rprdx =B.C. = > u(é})J Ve - Vprudx
Q T Q

e The integrals are calculated using a Gaussian quadrature.



Spectral Element Method

Gaussian Quadrature

e To approximate an integral by quadrature, we write it as a weighted sum over discrete points:
fFR)dx ~ D f(Re)m(xp)wi
Om z

e In the Spectral Element Method, we set the nodal points used for polynomial interpolation equal to the
quadrature points. This means the mass matrix can be simplified as:

peprax = > ol ER)dr(Er)m(ER) Wi = Im(E)wiby
Qm E
e This greatly simplifies the linear algebra involved.
e The Gauss-Lobatto quadrature (which SEM uses) is exact for polynomials of degree d <= 2n-1, where n
is the number of quadrature points. This means many vector-calculus identities are preserved in this
formulation, which leads to local and global conservation.



Spectral Element Method

Global vs. Local Formulation

Due to the piecewise approximation, elements are mostly
independent of each other.

The only interdependence between elements occurs at the
boundaries, where elements share nodal points.

When integrating, one can solve the matrices globally, or one
can distribute local element data to different processors and
integrate each element in parallel.

This gives the exact same result as the global method for
interior points, but points on elemental boundaries may
disagree between elements. This discontinuity is resolved by a
weighted average.

After the parallel integration + weighted sum, the local method
and global method are mathematically equivalent.




Spectral Element Method

Euler and Newton methods

Once the time derivative is known, we can calculate the next time step through the Forward Euler
Method:

du; ui(t + At) = u; + Au;
— = Fi(w) T
dt Au; = Fi(u)At

This method can have instabilities, however, which requires a CFL factor to control it (typically has the
form At = cAx" for some c and n.
One way to remove these instabilities is to use an implicit Euler method:

ui(t+ At) = u; + Au;
Aui=(1-0)Fi(u(t)) +6F(u(t+ At))

This is typically a nonlinear equation that must be solved via iterative Newton methods and the
Jacobian matrix J:

1 oF
(n+1) _ A, () (nMy=1p,,(") {
Au: =Au: "’ + ——J(u(t) + Au Ay B o —



Spectral Element Method

Euler and Newton methods (cont.)

e The Jacobian matrix will have dimensions (N x (d + 1)4m)2 where

NF = number of fields, dim = dimension, and d = interpolation degree.

e For aproblem with 10 fields, polynomial degree 4 and 3 dimensions,

this is approximately (10 x 5°)% = 1.5 x 10° components. If each number is
stored in 16 bytes (double precision) this comes to approximately 25 MB.
e Each compute node in BEACON has 256 GB of memory and 16 cores, \

which comes to 16 GB per core. Problems with a large number of fields or

high interpolation degree can strain this memory restriction.

e Most problems only have a few chemical interactions, which gives the Jacobian a sparse or banded
structure that can be split among processors using TRILINOS.




Finite Element Method

Continuous vs. Discontinuous Galerkin Method

ou 2
E:V u
Continuou iscontinuoys
Lug"§=_zf a_“@dx B.C. f &LZI s BC
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| ot ot |

[ Code Finished [ Working on ]




Serial Code (C):
811,(&) 62’U(a)
ot = Yz T R@ W)

o 1-dimensional multiple-species
diffusion equation with source term
o Method:
m Spectral Element Method
m  Guassian-Lobatto Quadrature
m Euler Backward Method and
Newton Method

Parallel

Parallel Code (Fortran):

dUq
ot

(0]

= DaVZ Ug — V- VUG + Ra(U)

Fortran modules designed to solve multi-
dimensional PDEs with Spectral Element Method
module HESIOD:

m  Stores data about mesh, fields and equation

module HOMER:

m  Performs time-integration on each element
separately (parallel)

m  Resolves boundary discontinuities via
weighted sum (serial)

Currently tested on:

m 1- and 2-dimensional multiple-species
diffusion equations with convection and
source terms

m  Forward Euler Method, no splitting



Testing Example:

o chemical equation:
Cly=Cl+Cl

o 2-species math model:
a[Cla] d 9% [Cla)
- [?'z] | 1‘) [(Q)’")T

Jd|C a=|C c ~

0.001[Cly] + 0.05[C1)*
0.1[C1)?

domain: [0, 6]

e Initial Condition:

o value of [Clz] and [C]]
[Clz] = 2-2cos(PI*x)
[C]] = sin(PI*x)

11,

—C]_2

e C |




e Initial Condition

T =0

N\
WANA

—C]_2

s |

e Solution run by the serial code

T=2.0 T=4.0

—Cl_2

—_—Cl_2

—Cl ]

—C]_2 J—

e |

Compare with FVM
T=4.0
SEM | —a.
FVM | o

FVM : solution given by
Jian Sun(UTK)



Program Solution VS Theoretical Solution

e Differential Equation : e Initial Condition : e Theoretical Solution :
du d%u : —0172T -
= = 015—+0.1u u=sin(nx)atT=0  y= g 01T Igin ()

Compare the solution at T = 10.0

N\ ANANNAN

P00 A Y VO Y Y O Y R
(o.ooooc;)o‘—‘LO 3. 1Q00 15.90 2000

(0.00016)

w===30Elements ====Theoretical Solution



Program Solution VS Theoretical Solution

Compare the solutionat T = 10.0

0.00014 -

ANANAANNAAN
ST AY R TAVAr AT AYFYRERE
v VVVVVV VYV

(0.00016)

0.00004

=30 Elements ====Theoretical Solution

——=SEM ~——Theoretical Solution =——FVM



Convergence of the Solution
Fix the domain to be [0, 20] and Vary the number of elements from 13 to 70
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Convergence testing

e AU d?u
Equation: 9duU —012% 104
ot dx?

Theoretical Solution:

u(x, t) = e~ 101 + =017t cos(1x))

Convergence Test

0.5054

0.5052

0.505

0.5048

0.5046

0.5044

0.5042

0.504

Convergence Test

Zoomed on [0,0.025]

— elem5

— elem10
elem20

e elem40

=p— theoretical

0 0.005 0.01 0.015 0.02 0.025

Parallel



2D test case: 2A = A
d[Az]
ot

o[A] , o o 2
— = 2.0V°[A] —Vv-V[A]+1000.0[A2]+160.0[A]

= 2.0V?[A;] - V-V[A2] - 500.0[A2] + 80.0[A]?

Vx =50.0 e Tested on5x5 (=25) elemental grid
Vy = 0.0 e dx=0.2,dt=0.0001

Parallel



2D test case: 2A = A>

t=0 _ » t=0.002




Scalability

Tested previous example with 32 x 32 (=1024) element grid on 1, 2, 4, 8,
..., 1024 processors.

Scalability of HH

e Minimum time at 512 processors Logiog
e (an be improved by parallelizing
the weighted average process ' -
e Computing time may be improved : "o -
by adding operator | ; B
splitting

0
0 2 4 6
P r I I I Number of processors = 2x



e Serial Code: e Parallel Code:

o Parellelize the averaging process on the
boundaries by sending boundary data only
to neighbors

o Implement option for operator splitting to

o  Finish the current discontinuous
Galerkin serial code and test the
accuracy of this code

o  Write a discontinuous Galerkin code

based on Dr.Chung’s(CUHK) algorithm improve Compl.Jtational efficfi(?ncy
o  Combine the code of the discontinuous ©  Implement options for Implicit Euler and

serial code with the parallel code with Newton methods
Trilinos o  Allow user to set more general boundary

o Hopefully, a discontinuous parallel code conditions: Dirichlet, Neumann, Robin and

would be obtained Periodic ) o )
o Interface with Trilinos to allow for higher

dimensional problems and a large number
Parallel
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