Vascular Fluid Structure Simulation

Tak Shing, Au Yeung
Department of Mathematics
The Chinese University of Hong Kong

autak5902@hotmail.com

Abstract

The vascular system is an important component for the human
health and a computational model of blood flow could help di-
agnosis and treatment of health problems. Also, this project
evaluates the stability of the solver to handle fluid structure in-
teraction problem with the boundary implementation. Blood
flow is described by 3D cylindrical incompressible Navier-
Stokes equations (INS), and a set of structure equations de-
termines the radial and longitudinal deformation of the vessel
wall. Parallel Interoperable Computational Mechanics Sys-
tem Simulator (PICMSS) is chosen to solve INS. PICMSS is
a parallel computational software for solving equations with
continuous Galerkin finite element method and is written in C
program with MPI and uses Trilinos iterative library for solv-
ing systems of linear equations generated internally by finite
element method. On the other hand, I use continuous Galerkin
finite element method and Newmark method to solve the struc-
ture equations.

1 Overview

This report is to simulate vascular flow in arteries by using
incompressible Navier-Stokes equations(INS),which describe
blood velocity and pressure, and a set of structure equations
that determines the radial and longitudinal deformation of the
vessel wall.

The main goal is to evaluate the stability of implemented
solvers to handle fluid structure interaction problems. The
fluid-structure equations are solved by continuous Galerkin fi-
nite element method and will extend to discontinuous Galerkin
finite element method. This project also utilizes DIEL to solve
weak coupling equations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

To solve the equations, Parallel Interoperable Computational
Mechanics System Simulator(PICMSS) was chosen. PICMSS
is a parallel computational software for solving equations with
continuous Galerkin finite element method.

INS is solved by continuous Galerkin finite element method
with the initial conditions and boundary solutions from Quar-
teroni et al. [1]. For 1D and 2D axisymmetric structure equa-
tions, I first implemented the algorithm presented in Ottesen
et al. [2], then use continuous Galerkin finite element method
and also Newmark method in Hughes [3].For 3D structure
equations, I use the approach from Raoul et al. [4], then use
continuous Galerkin finite element method.

2 Fluid-Structure Interactions

There are two major components in fluid-structure interac-
tions, fluid(blood) and solid structure(vessel wall).They affect
each other. Blood flow causes deformation of the vessel wall
and deformation of the wall changes the boundary conditions
of blood flow.

Fluid (blood) is modeled by Navier-Stokes equations. Solid
structure (vessel wall) is modeled by partial differential equa-
tions of 1D, 2D and 3D, giving radial and longitudinal defor-
mation of wall from its resting state. This project develop a
coupling strategy to solve fluid-structure equations.

2.1 Fluid Equations

u,féV2u+u-Vu+Vp=0
V-au=0

2.2 Structure Equations



2.3 Algorithm

1. Solve Navier-Stokes equations(INS) for blood flow velocity
and pressure

2. Solve structure equations for deformations of the vessel
wall

3. Update the mesh and radial velocity at vessel wall

4. Repeat Step 1-3 until a stable solution is reached
5.t=t+At

6. Continue from Step 1

3 2D Axisymmetric Fluid equations

I assume that blood flow is axisymmetric and without swirl.
Therefore, the fluid equations are derived using cylindri-
cal representation(r,x, 0) of the incompressible Navier-Stokes
equations with no 6 component, where x is in axial direction,
r is in radial direction and 0 is angular coordinate.Hence, the
fluid equations take the form:
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where u is the radial velocity, w is the longitudinal veloc-
ity, p is blood pressure, p is the density of blood (constant,
lg/cm?®), and v = u/p is the kinematic viscosity (also con-
stant, 0.035¢m/s).

3.1 Mathematical transformation of Fluid
Equation

The fluid equations are reduced to a matrix form through trans-
formation to weak finite element form and semi-discretization.

Semi-discretization:
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Fluid Equation (1)
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3.1.2  Fluid Equation (2)
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3.2 Projection Method

The first step is using Euler backward method to approximate

%—’;, aa—”t” Then, the pressure(p) is replaced by SPHI, which is

corrected by PHI for each step. PHI satisfies the following
equation:
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Hence, the whole system is as follow and it is solved by
PICMSS:
Uk - U*
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SPHI* = SPHI*! + PHI

The PICMSS code and result are present in the Appendix.

4 Structure Equations

Structure equations are based on the Ottesen’s formula[2].
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where &1 represent longitudinal and radial deformations of
the vessel wall respectively.

4.1 Physical constants

Parameters are

e /i thickness of wall

e a~ 10~ 3m radius of artery

e FE,, Eg Young’s modulus in the x and 6 directions.

Ey/Eg~12.

M, LyL =~ 17 x 10%kg/(sm?), KK,
33 x 10%kg/(s*>m?) are the coefficients from mod-
eling the tethering force as a dash pot. M, is the
additional mass of the dash pot system, L, and L, are
the frictional coefficients, and K,,K, are the spring
coefficients.

~
~

My = M, + poh = 4kg/m? where py is the density of the
wall

Ti,.Tp, ~ 0 reference state of stresses in the longitudinal
and circumferential directions

6,=0g = 0.29 Poisson ration in the x and 6 directions
v = u/p kinematic viscosity
p ~ 103kg/m?> density of blood

co = Egh/(2ap) ~ 5m/s Moens-Korteweg wave propa-
gation factor

4.2 Mathematical transformation of First
structural equation
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Plugging in the combined identities and divergence theorem:
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where ny is the component of the unit normal vector
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on the boundary I'* and ds is the arclength of an infinitesimal
line element along the boundary. Let

d
qn = a*inx
Semi-discretization:
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4.2.2 Newmark Method

Apply Newmark method to the structure equations to deal with
the second order PDE
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4.3.1 1D version
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4.3.2 Newmark Method

Apply Newmark method to the structure equations to deal with
the second order PDE
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4.4 2D version

2D version of structure equations are the same as the 1D ver-
sion except for the boundary term and the use of elementary
functions.
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4.5 Combined System
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4.6 3D structural equation

D is the deformation matrix of vessel wall, and p is the pres-
sure of the wall.
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Next, replace {N},yjand{X},+1 using (6),(8) and then
change them into matrix form.
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The 1D result and PICMSS code for 2D structure are present
in the Appendix.

(5.1 Formulation of Structure equations

ot
{N},+&{DN},+ — ({DDN }n+{DDN},8) The movement of the vessel wall can be described by balanc-

ing internal and external forces on a surface element of the

) vessel wall in its deformed state. It is convenient to change

the variables to a coordinate system connected to the surface
of the vessel. This is shown in the top part of Figure B.1. Let
H be any vector pointing to the middle surface, as shown in
Figure B.1:

H =xX+R?

where £ and 7 are unit vectors in the cylindrical coordinate
system in the longitudinal and radial directions, respectively,
and R(x,t) is the radius of the vessel. The new coordinates
(n,1,8) can be determined from H . By assuming expressed in
terms of 7 and 7 given by
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Internal Forces

The internal forces on the infinitesimal surface element (dx X
rd0) have three components: a force N across the vessel wall,
a shearing force S on the sides of the element, and a force
T normal to each of the edges; see the bottom part of Figure
B.1. Most of these components are zero. The vessel wall is
thin, and so any variation in the force across the wall can be
neglected; i.e., Ny = Ng = 0. The flow is axisymmetric and
without swirl. Hence no shearing force will act on the side of
the element; i.e., Sy = Sg = 0. Thus the only forces left are T;
and Ty , the normal forces to each of the edges.
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Figure B.1

External Forces

The internal forces must be balanced by external forces acting
on the element. Let total external force be denoted by

P=Pi+Pi (B.6)

where P, and P, are the tangential and normal components, re-
spectively. P can be split into inertial forces, tethering forces,
and surface forces. In the following sections, these will be an-
alyzed separately.

Inertial Force

Let &(r,x,t) and n(r,x,7) be the longitudinal and radial dis-
placements of the wall. The inertial force per unit area is given
by (see Atabek and Lew (1966))

2
TF] = 7p0h(¥§x+ 8172 ) (B.7)

where pg is the density and 4 is the thickness of the wall. Be-
cause of the thin wall assumption, 7 must be small compared
to the vessel radius. We assume that both pg and 4 are con-
stant along any vessel of a given radius. The inertial force is
the force ensuring that the internal and external forces are bal-
anced. The inertial force must be included because the system
is not steady, so it is necessary to take acceleration into ac-
count. In physics, this is known as d’ Alambert’s principle.
Tethering Force

The tethering force TFT can be modeled using a simple me-
chanical model consisting of a spring, a dash pot, and some
lumped additional mass (Atabek, 1968). The tethering force
(per unit area) acting in the radial and longitudinal dir(ections
is given by
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where K; and L; ,i = x,r,are the spring and frictional coeffi-

cients of the dash pot in the ith direction and M, is the addi-
tional mass of the system. These are assumed to be the same
in both directions. Since both inertial and tethering forces act
in the same direction, it is convenient to add them before pro-
jecting the forces in the normal and tangential directions. Let

Moy = M, +poh.

The resultant inertial and tethering force in the tangential and
normal directions, respectively, then yield

Ty, i (B.9)
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Surface Force

The surface force is a result of fluid interaction with the vessel
wall. If the stress tensor of the fluid is given by Tf , then in-
teraction with the inner vessel wall (at r = R?1/2 = a) is given
by —TF, -/i. Assume that the stress tensor can be separated into
radial and longitudinal directions

(~Tg-A)-f and  (—Tg -)-A (B.11)

The stress tensor for incompressible flow is given by Ock-
endon and Ockendon (1995):
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In cylindrical coordinates the stress tensor becomes
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The fluid stress in the 7 and 7 directions can be found as
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Total External Force

The total external force can be found by adding the inertial and
tethering forces (B.9) and (B.10) as well as the surface forces
(B.13) and (B.14). Generally, these forces are not estimated at
the same point, but because of the thin wall assumption the re-
sulting error in the total external force is negligible. Equation
(B.6) gives

P=Pi+Pi=(—Tg i+Tp, ) t+(—Tg-i+Tp, )-A.

The tangential component is

P = {(rxx—m)g’jwﬁ((3’;)2_1)}“/@%3@2)

(B.15)

92 92 p) oR OR\"
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and the normal component is

OR OR\? oR\?
2Trxa*Trr*Txx (a) ]a/<1+(ax) )

(B.16)
25. 9§ 32
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Balancing Internal and External Forces When a wave is
propagated along a vessel, the vessel will dilate. Hence the
surface will appear as shown in Figure B.2. Considering this
surface, we can derive the equilibrium equations. Balancing
of internal and external forces will also be carried out in two
parts: one for tangential contributions and one for normal con-
tributions.

P, =

T(x +dx) R(x+dx)do

Figure B.2
Balancing Tangential Components of Internal and Exter-
nal Forces The area of the surface in Figure B.2 is given by

Rd6+/1+ (0R/dx)%dx, and the tangential part Py, of the ex-
ternal strain P, is given by
R\
- | dx.
+ ( 8x> x

The pressure load on any given volume element is — P, . This
should be balanced by the internal stress over the surface ele-
ment projected in the tangential direction. Thus the stress over
the surface in the tangential direction is given by

Pran = Pthe

Tian, = —T; (x)R(x)dO+T; (x+dx)R(x+dx)dO = 9 (T;R)dxd®,

ox

where the last equality is approximated using the first order
Taylor expansion for T;¢(x + dx)R(x + dx).

Furthermore, the stress from the radial tension also con-
tributes. As seen on the right- hand side of the surface ele-
ment in Figure B.2, the radial tension Ty gives contributions
in both the tangential and the radial directions. Since we have
axial symmetry, the net tension around the vessel at any loca-
tion is zero. The part of Ty pointing backward in the tangential
direction is given by

s R\ >
Tian, = —Tycos (5 fv) 1+ (g) dx =

where v is defined as shown in Figure B.2. Balancing T;4y,
and T4, With P4, and dividing by d0dx gives

fTeg—fdedx,

oR 0

OR
~Ty5 + = (RT) + PR 1+< >7o. (B.17)

ox

Balancing Normal Components of Internal and External
Forces Balancing normal internal stresses with the normal ex-
ternal strain gives

Py =xgTg + %11,

, s the curvature in the i direction. As seen

+ K g 32 the curvatures in the longitudinal and angular
1re ti Iﬁsxa e given by

3
_1 1+ R ’ d K—faz—R 1+ R ’
"R ox an T2 ox

Hence the balancing equation becomes

xeTo+x: T — P, =0

OR\? OR
(B.18)
Inserting (B.15) and (B.16) into (B.17) and (B.18) gives
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Figure B.3. Curvature of the vessel. The longitudinal curvature (in A) is given by
Kk, and the tangential curvature normal to the surface (in B) is given by k.

Elasticity Relations The purpose of this section is to set up



stress-strain relations such that the stress components 7;can
be related to the displacements of the wall (§,m). These
are measured from some reference state where vessels are
stretched to their in vivo length. The reason is that a loose
piece of artery (unstressed) requires very large deformations
to be brought to its original stressed state. However, the gen-
eral theory of elasticity applies only for small deformations;
see,e.g.,.LandauandLifshitz(1986). Thisproblemcanbeavoid-
edbymakingthederivations orginate from some initial stressed
state. Hence it is assumed that, when a wave moves along
an artery, it undergoes small deformations from its reference
state. The initial state is chosen to be the state where the
transmural pressure of the artery is zero. Furthermore, it is
assumed that it is adequate to apply a linear relation between
stress and strain. Let the reference state of stresses in the
longitudinal and circumferential directions be denoted by Ty,

linearization, f(r,x,t) must be evaluated at r = a = R — h/2.
The power series expansion together with the Taylor series ex-
pansion to first order yields
frnxn) = flax)+f (rx)(r—a)
= folax,t)+ fia,x,1)e
+(fola,x,1) + fi(a,x,0)e)(r = (Ro+ R1€h/2))

+&(fi(a,x,t) =Ry fo(a,x,t) +kfi(a,x,1)), (B.25)

where k = r— Ro+h/2. Using (B.23) to (B.25), the zeroth and
first order equations can be obtained by assembling terms to
the respective powers of € from the nonlinear equations (B.1)
to (B.3), (B.19), and (B.20). Terms of First Order Approxi-
mations The first order terms of the shell equation (B.19) give

and Ty, . Then the following relations can be obtained: oR, 9
—T907+*(R07}] +R1Tm) (B.30)
Ty—T; Eoh (¢ +oe)) and T—T, Exh 6. +oee,) o dx
—Tyy=— c an -1, = ,
0 6 1— g0y r x€x t to 1— GG(%ZI); ocr 82{; aé ;
. 1 1 R

where E;, i = 0,t, is Young’s modulus in the ith direction; A —Ro (MO o2 -I—ny K& — | (T — T”U)W - T’XI} ) =0
is the wall thickness; G;, i = 0,x,is the Poisson ratio in the “
ith direction; and €;,i = 0, x,is the displacement relative to the 5
reference state; see, e.g., Landau and Lifshitz (1986). The rel- M, 9 L ai-'l K.E = ai Ty — To, & _ aﬂ

Jeren . auand L . SMy=5 +Li—= +K& +
ative circumferential and longitudinal displacements are given ot ot ox Ry ox or

by
n

gr:E and &, = =—

dx

Balancing Fluid and Wall Motions Boundary conditions
linking the velocity of the wall to the velocity of the fluid re-
main to be specified. Assume that the fluid particles are at rest
at the wall. Hence

s
ot
Furthermore, assume that the component of the fluid velocity
normal to the wall is equal to the normal velocity of the inner
surface of the vessel wall. Hence the normal velocity of the
wall, at a = R(x+&,1) — h/2, is given by

o

[U]r=q = a5 and  [W]y=q = (B.22)

d h OR dR
E (f—R-‘ri) :Oﬁ[u}r:a_[w}r:aa_g :0

Linearization In principle the correct number of equations
and boundary conditions are present. However, in their present
form these equations are too complicated to solve analytically.
As discussed earlier, the purpose was to set up a simple sys-
tem of equations for the smaller arteries. Therefore, following
Atabek and Lew (1966), we have chosen to linearize them.
The linearization is based on expansion of the dependent vari-
ables in power series of a small parameter € around a known
solution. This is defined by a situation where the fluid is at
rest and the vessel is inflated and stretched. Furthermore, if
€ = 0, then all dependent variables give the known solution.
The expansion is given by

s=sie+5e 4+ for s=u,wn,& T,  (B23)

§=So+5ie+5e + - for §=p.RTy,T;, Ty, Trx, (B.24)

where sg is a constant defining the reference state (at zero
transmural pressure). Let f(r,x,7) be either of the func-
tions in (B.23) or (B.24). In order to accomplish the

(x,1)

(x +§,1)

Figure B.4. Estimation of R(x + &, t) using the definitions of & and n.

The last equation is obtained using the stress tensor (B.12)
for the first order approximation of 7}, and the zeroth order
approximation of Ty, — T, , which cancel. The first order
terms of the shell equation (B.20) give

Ty Ry 82R1 aan anl
Ro T Toge MoGe TLg KM Ty =0
82n1 oy Ty R 82R1 Juy
My~ +L,—+KM=——2+Ty, — +T; = —2u—
= My 72 +L, o + KM Ro + 6o R(z) +1 o2 + |:p1 H r

where we have again used (B.12) for the first order approxima-
tion T, . Assuming that the second order approximations can
be neglected, € can be incorporated into the dependent vari-
ables and we can set € = 1. For any (x, ) the first order Taylor
expansion of R(x+ &) gives

R
ROe6.1) = R 1) + g = Ro 41,

as seen in Figure B.4. The first order expansion of R from
(B.24) is given by

R(x,t) =Ry +Rie+ O(?) = Ry +m18+ O(?) ©n; =Ry,

L



since M has no zeroth order term. Furthermore, we approx-
imate Ry by the inner radius a = Ry — h/2. Since the walls
are assumed to be thin compared with the vessel radius, i.e.,
h < a, the error is negligible. Finally, the indices 1 are dropped
and the definitions in (B.21) are used for Tp, and T;, . The
linearized equations can be obtained from their first order ap-
proximations; i.e., (B.30) and (B.31) become

’E o

MO?JerngKx‘g
__Eh E)zj+( Exhoy TfofTeﬂ)aﬂ_ [al al]
T 1— 040y 02 ' ‘a(l—CpGy) a o Moy Tl
(B.32)
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5.2 Result
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1D Structure equations’ result

e L A e S B N N B A s

PICMSS Code for 2D Structure equations
* |

KU2DT2 OP_2 DDUL

OPERATORS 4
OP_1 % cn200
OP_2 * cn2xx
O0P_3  * cn20x *
* cnlo *

RHS_DDV 11
mCKV OP_1 DDV
DVDT2 OP_3 DDU
DCV OP_3 UL
DCVDT OP_3 DUL
DCVDT2 OP_3 DDUL
MSV OP_4 1

C OP_1 DVL

CDT OP_1 DDVL
KV OP_1 VL

KVDT OP_1 DVL
KVDT2 OP_1 DDVL

NUMBER_OF_SETS 5
DDUDDV_EQUATION_SET  @:

OPERATORS 4

OP_1 OP_2 OP_3 OP_4
EQUATIONS 2 JAC_DDU_by_DDU 2
mCKU1 OP_1
RHS_DDU 15 MKU2 OP_2
mCKU1 OP_1 DDU
MKU2 OP_2 DDU
DCUDT2 OP_3 DDV
DCU OP_3 VL
DCUDT OP_3 DVL
DCUDT2 OP_3 DDVL

JAC_DDU_by DDV 1
DCUDT2 0P_3

JAC_DDV_by_DDU 1
DVDT2 0P_3

JAC_V_ by V 1
mCKV OP_1

NO_NEU_BC_TYPE_U 0
NO_NEU_BC_TYPE_V 0

KU1DT2 OP_1 DDUL

KU2DT2 OP_2 DDUL U_EQUATION_SET 1:

19% inegnt.indat

References

A. Quarteroni, M. Tuveri, A. Veneziani, “Computa-
al vascular fluid dynamics: problems, models, and meth-
;> Comput Visual Sci, vol. 2, pp. 163-197, 2000.

J. T. Ottesen, M. S. Olufsen, J. K. Larsen, Applied
hthematical Models in Human Physiology(Siam Mono-
phs on Mathematical Modeling and Computation), SIAM,
D4.

T. Hughes, The Finite Element Method: Linear Static
i Dynamic Finite Element Analysis, Mineola, New York:
ver Publications, Inc., 2000.

[4]
Baaijens, Frans N. Van de Vosse, A three-dimensional fluid-
structure interaction method for heart valve modelling, C. R.

Raoul van Loon, Patrick D. Anderson, Frank P.T.



Mecanique 333 (2005)



