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. Can be solved efficiently on a qIIeI computer
~ * Results in code that is highly reusable
«“Generally a good idea for program design
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° Direct communicafion ; e MP| Se ‘ -nd

. - MPI_Recv() that entorce shared bounda y cor ditions

* Indirect communication = global “tuple space” used to store

data until it is needed
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Specifies
.cfg file
. . The driver calls the executive
Conflgu ration for each process, supplying
F|Ie the name of the configuration
file as an argument
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o B Very time ant s confusing to convert



| {stdio.h>
2 ¢stdlib.h>
3

4 int main()

3 {

6  printf("Hello from FirstModule\n");
T

8 return EXIT SUCCESS;

9}



1 (stdio.h>

2 ¢stdlib.h>

J

4 qmpi.hy [*these*/

5 "IEL.h" [*are*/

6 "IEL exec info.h"  /*required to use the IEL functions*/
1

8

9 int FirstModule(IEL exec info t *exec info)
10 {

11  printf("Hello from FirstModule\n");

12

13 return EXIT SUCCESS;

14 }
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* Given A\VA users

~ * Possibly develog At} 0 break down existing code

"i'ho“ elize sections

® Possibly incoi'r'f‘r ' Iéques
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D Tuple spaces have iple uses. The DIEL uses one to

o

achieve asynchronous, stochastic inter-process

communication.
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~ boundary condit | ect communication

® The da a structure used is a distributec hash table
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Direct Comm
(existing)

Config
File

Executive

IEL_Exec_DE_init()
IEL INFO,
Module INFO,
Handle INFO

ous, MPI send and
ve wrapper
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Config

Tuple Comm
(existing Prototype)

. Executive
File

IEL_Exec_TS_init()
IEL INFO,
Module INFO,
Tuple INFO

) Tput (Data) § INFO

Client
Tget (Data)

Asynchronous exchange, one
way communication

Scalable Tuple Comm
(current expansion)

Config
File

Executive

IEL_Exec_DTS _init()
IEL INFO,
Module INFO,
Tuple INFO, TM INFO

Scalable asynchronous many

to many exchanges



K\) DISTRIBUTED HASH TABLES
\l\j ® In a hash table, a hash function calculates the proper f

/
index for data element based on its associated key
O
® In a distributive hash table, the hash function returns the
proper node as well as the index on the node
1 & Hash Function Stored Values

* This means we do not
need to pass messages
between multiple
processes just to find
out where our data
element is located
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® dince the hash runction always returns the sa e values
T or the same input, If IEL_tput and IEL_tget ooth call the

hash ction, they will get back | e same location

* So they will Ioc.SI-'{I”"'rh"Iace without directly
communicating with each other!
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* A rob ust tuple server algorithm must be able to anticipate

and handle all po ible seque ces short of a catastrophic

hardware failure
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