
SCALING AND OPTIMIZING
STOCHASTIC TUPLE-SPACE
COMMUNICATION IN THE
DISTRIBUTIVE
INTEROPERABLE EXECUTIVE
LIBRARY
Zaire Ali (Morehouse College)

Jason Coan (Maryville College)

Mentors: Kwai Wong and David White

LOOSELY COUPLED SYSTEMS

•  Modular program design

•  The problem is broken down into sub-problems that are
computed independently

•  Interaction between modules occurs along a set of
specifically designated shared boundary points

•  Reduces the complexity of the system, and makes it easier
to debug

•  Can be solved efficiently on a parallel computer

•  Results in code that is highly reusable

•  Generally a good idea for program design

THE DISTRIBUTIVE INTEROPERABLE
EXECUTIVE LIBRARY (DIEL)

• Designed to make it easier to build loosely coupled
systems for high-performance computers

• A lightweight integrator of modules, managing
distribution of data and coordinating communication
among processes

STRUCTURE OF THE DIEL

• Consists of the “Executive” and a communication library

•  Executive reads a simple configuration file to execute
desired modules and define the shared boundary points
between them

• Communication library consists of two parts:
•  Direct communication – wrappers for MPI_Send() and

MPI_Recv() that enforce shared boundary conditions

•  Indirect communication – global “tuple space” used to store
data until it is needed

2 modules, 2 processes per module, 4 points per
shared boundary condition

shared_bc_sizes = [4,4];

modules = (
{
 function=“Radiosity_Module_V3";
 library="librad.so";
 size=2;
 points=(
 ([0,1,2,3], []),
 ([], [0,1,2,3])
);
},
{
 function=“Thermal_Module_V1";
 library="libtherm.so";
 size=2;
 points=(
 ([0,1,2,3], []),
 ([], [0,1,2,3])
);

}
);

TRADITIONAL CODE USING C

• Can be executed on most machines that have a C
compiler

•  Traditional libraries do not properly accommodate
supercomputer resources

C TRADITIONAL CODE AND DIEL

• Needs to be properly called from the configuration file

•  Function names and definitions need to be modified
accordingly

• Very time consuming and potentially confusing to convert

NON-C TRADITIONAL CODE AND DIEL

• Allows users larger access to previously written code

• Allows users the benefits of other languages while still
providing the benefits of using the DIEL

• Successfully developed methods that allow Fortran and
JAVA based codes to be executed using DIEL

REPETITION AND SERIAL DIEL CODE

• Useful for collecting simulation data

• Successfully developed methods to execute code multiple
times simultaneously across several processors

SCALABILITY

• Ability of a system to expand to accommodate a given
work load

• By using repetition on serial code we can receive a
benchmark on how a system adapts to a huge work load

FUTURE OBJECTIVES

• Perform scalability tests on more systems

• Create universal scripts

• Give more DIEL access to Fortran and JAVA users

• Possibly develop a method to break down existing code
and parallelize sections

• Possibly incorporate more languages

WHAT IS A TUPLE SPACE?

• Basically, it is associative memory that can be accessed
concurrently.

• Associative memory means that the pieces of data, or
“tuples”, are indexed according to whichever abstract,
human-intuitive idea they represent.

•  Tuple spaces have multiple uses. The DIEL uses one to
achieve asynchronous, stochastic inter-process
communication.

THE EXISTING PROTOTYPE

•  Tuple-space communication consisted of a single server
process processing “put” and “get” requests in sequence

•  The server was a special function that was called on rank
0 by the executive

• Not concurrent, therefore not a true tuple space

• Associativity was implemented, but it was completely
arbitrary. The user would simply choose any “tag” for
each tuple when putting it to the server

DESIRED END

•  The tuple server is a DIEL module, like any other

• Multiple servers running in parallel

•  Each server controls an equal portion of the overall tuple
space

• Data are indexed according to the same shared
boundary conditions used for direct communication

•  The data structure used is a distributed hash table

DISTRIBUTED HASH TABLES

•  In a hash table, a hash function calculates the proper
index for data element based on its associated key

•  In a distributive hash table, the hash function returns the
proper node as well as the index on the node

•  This means we do not
need to pass messages
between multiple
processes just to find
out where our data
element is located

HOW AND WHY IT WORKS

•  Each of the shared boundary conditions in the
configuration file is assigned an integer-value ID

•  The hash function uses modulus to determine the correct
tuple server, and again to determine the correct index

 SBC_ID mod NUM_SERV = server

 SBC_ID mod NUM_IDX = index

HOW AND WHY IT WORKS (CONT.)

• DIEL modules have two functions for interacting with the
tuple space:

 Producer: IEL_tput(&data, size, sbc)

 Consumer: IEL_tget(&data, &size, sbc)

• Since the hash function always returns the same values
for the same input, if IEL_tput and IEL_tget both call the

hash function, they will get back the same location

• So they will look in the same place without directly
communicating with each other!

ANTICIPATING A STOCHASTIC PROCESS

• A major challenge with most parallel systems is that they
are, from the programmer’s point of view, nondeterministic

•  The actual sequence of events will usually be different
every time the program is run because every process is
individually subject to a large number of uncontrollable
variables

• A robust tuple server algorithm must be able to anticipate
and handle all possible sequences short of a catastrophic
hardware failure

ANTICIPATING A STOCHASTIC PROCESS (CONT.)

For example, consider having a producer module and a
consumer module. The producer module is delayed by the
operating system, and the consumer calls IEL_tget on the
relevant data before the producer calls IEL_tput. So the tuple
server is faced with being asked for data that it does not
have.

When I started development, the existing tuple server
algorithm could not handle this case. The system would

become deadlocked and never complete.

A RANDOMIZED STRESS TEST

•  Do this ten times, with ITER starting at 0:
•  Send your rank id to the tuple space using your rank ID plus ITER as the input to the

hash function

•  Do this until you are done:

•  Based on the number of module processes, pick a rank ID at random

•  Request that ID from the tuple space, using the ID plus ITER as the input to the hash function

•  Repeat until you have received every rank ID in the system, including your own, at which
point you are done

•  Increment ITER and repeat

RESULTS OF TEST

•  Due to the randomized nature of the test, we should run it many times
and then look at the distribution of completion times.

•  16 tuple servers, 256 module processes on Darter

•  After 40 trials, the tuple servers collectively fulfill an average of 9.6
million tget/tput requests per trial

•  It takes an average of 7.5 seconds to complete

