W]/l NICS

oint | \ NSF
Cor .l v,

k en |

A
' 3 \> SCALING AND OPTIMIZING

£O STOCHASTIC TUPLE-SPACE
j COMMUNICATION IN THE

DISTRIBUTIVE
INTEROPERABLE EXECUTIVE
LIBRARY

ol B e]
'\‘ ";%&&@ *" Mentors: Kwai Wong and David White COEJGE m

=
o
\ demaest

ot of

:/)'—_ B 4 NS g &r'r‘}

-~

. Y Bg aduces fthe D|ex " The /stem, and n C es it easier

ofS o1l

. Can be solved efficiently on a qIIeI computer
~ * Results in code that is highly reusable
«“Generally a good idea for program design

aging
* A lightwe -

Ing communication
-~ distribution of p

d‘on Drocesses

r

v/ C_Orhn y)

&

° Direct communicafion ; e MP| Se ‘ -nd

. - MPI_Recv() that entorce shared bounda y cor ditions

* Indirect communication = global “tuple space” used to store

data until it is needed

| I
;J}uhgw nerma Viod

D,.’JL‘J!]: libtherm.so

([1, [0,1,2,3])
)

Driver

Specifies
.cfg file
. . The driver calls the executive
Conflgu ration for each process, supplying
F|Ie the name of the configuration
file as an argument
\ A 4

Executive

|

— : Tuple Executive Direct :
| Comm loads modules Comm :

| 1

COMMLIB

R - .
T
),
—_

PT Module

T

o B Very time ant s confusing to convert

| {stdio.h>
2 ¢stdlib.h>
3

4 int main()

3 {

6 printf("Hello from FirstModule\n");
T

8 return EXIT SUCCESS;

9}

1 (stdio.h>

2 ¢stdlib.h>

J

4 qmpi.hy [*these*/

5 "IEL.h" [*are*/

6 "IEL exec info.h" /*required to use the IEL functions*/
1

8

9 int FirstModule(IEL exec info t *exec info)
10 {

11 printf("Hello from FirstModule\n");

12

13 return EXIT SUCCESS;

14 }

‘hat allow Fortran and

xecuted using DIEL

o _an
DY ecelve a

penchmark 'S TO d 'rlug}gi ork load

* Given A\VA users

~ * Possibly develog At} 0 break down existing code

"i'ho“ elize sections

® Possibly incoi'r'f‘r ' Iéques

B

Numa

D Tuple spaces have iple uses. The DIEL uses one to

o

achieve asynchronous, stochastic inter-process

communication.

r

o | y -
r\'wJ' - yJC)\(rd

Ty Q A OCIATIVIT / N ‘ = = KS ¢ | | W SJ\3 J ’v letely

arbitrary. The user would simply choose any “tag” for

each fUplé en puiting TO TNE ~sver
N "’*MW i Y
/

v/ D‘LJ U S 2 Sndre 0"

~ boundary condit | ect communication

® The da a structure used is a distributec hash table

r

Synch

re

Direct Comm
(existing)

Config
File

Executive

IEL_Exec_DE_init()
IEL INFO,
Module INFO,
Handle INFO

ous, MPI send and
ve wrapper

92eds ajdn]
JaA19s 9|dn|

Config

Tuple Comm
(existing Prototype)

. Executive
File

IEL_Exec_TS_init()
IEL INFO,
Module INFO,
Tuple INFO

) Tput (Data) § INFO

Client
Tget (Data)

Asynchronous exchange, one
way communication

Scalable Tuple Comm
(current expansion)

Config
File

Executive

IEL_Exec_DTS _init()
IEL INFO,
Module INFO,
Tuple INFO, TM INFO

Scalable asynchronous many

to many exchanges

K\) DISTRIBUTED HASH TABLES
\l\j ® In a hash table, a hash function calculates the proper f

/
index for data element based on its associated key
O
® In a distributive hash table, the hash function returns the
proper node as well as the index on the node
1 & Hash Function Stored Values

* This means we do not
need to pass messages
between multiple
processes just to find
out where our data
element is located

r

q)

® dince the hash runction always returns the sa e values
T or the same input, If IEL_tput and IEL_tget ooth call the

hash ction, they will get back | e same location

* So they will Ioc.SI-'{I”"'rh"Iace without directly
communicating with each other!

Frocess IS

(L
d

>
ndiv F uncontrollable
variaples

* A rob ust tuple server algorithm must be able to anticipate

and handle all po ible seque ces short of a catastrophic

hardware failure

%

q)
‘

\"

9 >

Vel

\d

nave.

he_ gj_;uj,-xj development, the existing Uble server

el | T B

indle this case. The system would

algorithm coule not | th
(ﬁ become deadlocked and never complete.
@

A
e

out to the hash function

uding your own, at which

®* It takes

